• Title/Summary/Keyword: wear loss.

Search Result 416, Processing Time 0.026 seconds

Tribological Failure Analysis of Automatic Transmission in a Passenger Car (승용차 자동변속기의 고장사례에 관한 트라이볼로지적 고찰)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.227-235
    • /
    • 2005
  • This paper presents a tribological study on the failure cases of automatic transmission components in a passenger car. The automatic transmission system is composed of torque converter, clutch, brake, planetary gear, and valve body controlling oil pressure of an automatic transmission fluid. The most largest influence components in an automatic transmission are a torque converter and clutch plate in which are influenced by a wear and torque converting energy loss. The failure case study of an automatic transmission indicates that the tribological design and maintenance technologies should be considered as a key design concept. This means that the failure and power energy loss come from the friction, wear and a oil leakage of an automatic transmission, which is related to the oil seal and O-ring seal failures.

Sliding Friction and Wear Behavior of C/C Composites Against 40 Cr Steel

  • Ge, Yicheng;Yi, Maozhong;Xu, Huijuan;Peng, Ke;Yang, Lin
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.97-100
    • /
    • 2009
  • In this work, effects of carbon matrix on sliding friction and wear behavior of four kinds of C/C have been investigated against 40 Cr steel ring mate. Composite A with rough lamination carbon matrix (RL) shows the highest volume loss and coefficient of friction, while composite D with smooth lamination/resin carbon matrix (SL/RC) shows the lowest volume loss. The worn surface of composite A appears smooth, whereas that of composite C with smooth lamination carbon (SL) appears rough. The worn surface of composite D appears smooth under low load but rough under high load. Atomic force microscope images show that the size of wear particles on the worn surface is also dependent on the carbon matrix.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics (탄소섬유강화 질화규소 세라믹스의 마찰마모 특성)

  • Park Yi-Hyun;Yoon Han-Ki;Kim Bu-Ahn;Park Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

Surface Tribology of Total Ankle Joint Replacement (인공발목관절의 표면 마모 특성)

  • Jeong, Yong-Hoon;Jung, Tae-Gon;Yang, Jae-Woong;Park, Kwang-Min;Lee, Su-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.117-117
    • /
    • 2016
  • Total ankle replacement (TAR) is a visible option in the surgical treatment of degenerative or inflammatory diseases of ankle joint. it is attributed to the current TAR which has improvements in surgical technique, uncemented implant fixation and minimally constrained articulation. In the clinical result, they can show promised surgical result when compared to earlier attempts in TAR. However, TAR is still not as successful as total knee replacement (TKR) or total hip replacement (THR), it needs to be note that there are limitations in concerning of long term performance of TAR, the high failure rate still associated with wear of the PE (polyethylene) component that has related with their material property and surface roughness. The aim of this study was to introduce the tribology characteristics of total ankle joint prosthesis with one of TDR model which was fabricated to try multi-axis wear test as a region of motion in ankle joint. The wear specimen of TDR was prepared with Ti-6Al-4V alloy and UHMWPE (ultra-high molecular weight polyethylene) for tibia-talus and bearing component, respectively. A wear test was carried out using a Force 5 (AMTI, Massachusetts, US) wear simulator which can be allowed to move in three axis to flexion-extension ($+3^{\circ}{\sim}-6^{\circ}$), internal-external axial rotation (${\pm}5^{\circ}$), as well as sinusoidal compressive load (1.6 kN, R=10). All tests were performed following standard ISO 14243, wear rate was calculated with weight loss of UHMWPE bearing while the specimen has tested at certain cycles. As based on the preliminary results, wear rate of UHMWPE bearing was $7.9{\times}10^{-6}mg/cycles$ ($R^2=0.86$), calculated loss weight until $10^7cycles$ was 79 mg, respectively.

  • PDF

Wear Behavior of Silica filled Styrene-Butadiene Rubber: A Comparative Study Between the Blade-Type and Akron-Type Abrader

  • Gi-Bbeum Lee;Dongwon Kim;Seowon Lee;Seonhong Kim;Myung-Su Ahn;Bismark Mensah;Changwoon Nah
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of the particle size and silica structure on the wear behavior of Silica/Styrene-Butadiene Rubber (SBR) compounds was investigated using a blade-type abrader and the findings were compared with those obtained with an Akron abrader. The compensated characteristic parameter (Ψc), which was the contributory factor of the combined effect of the particle size and filler structure, was introduced. This parameter was found to exhibit a linear relationship with the Young's modulus. The Young's modulus correlated more with Ψc than the uncompensated characteristic parameter (Ψ) modeled for carbon black. The wear rate and volume loss measured using a blade-type abrader and Akron abrader were respectively observed to be inversely proportional to Ψc, that is, the wear resistance of Silica/SBR compound improved as the particle size became smaller and the silica structure became intricate. The coefficient of determination (R2) obtained from the linear relationship between Ψc and wear rate was higher than those between Ψc and volume loss for the Silica/SBR compound. Thus, the blade-type abrader exhibited high potential to be used for accurately evaluating the effect of particle size and structural properties of silica on the wear behavior of SBR compounds.

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

A Study on Wear loss of Motorcycle Brake Disk by Response Surface Method (반응 표면법을 이용한 이륜자동차 브레이크 디스크 마멸량에 관한 연구)

  • Jeon, H.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.44-49
    • /
    • 2008
  • In this research, I would like to choose sliding distance and ventilated hole number which affect to the amount of wear of disk and pad as experiment conditions of 'the amount of wear' through wear test of motorcycle brake disk. Also, I analyze the amount of wear according to the variation of coefficient of friction by using design of experiment that is being widely used in diverse areas. With the tests of least, I present the correlation of each experiment condition. Therefore, I analyzed the variation of the amount of wear of disk and pad according to test factors such as ventilated hole number, applied load, sliding speed, and sliding distance in wear test of motorcycle brake disk by applying the design of experiment. Also, I analyzed quantitatively the influence of test factors through Taguchi Robust experimental design, response surface and examined the most suitable level and estimation of the amount of wear of disk. From these, I reached the following conclusions. response surface design, mathematical model was constructed about amount of wear of disk and pad. The amount of wear that decrease according to increase of ventilated hole number, and it's increase according to Increase of applied load, sliding speed, and sliding distance.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

Sliding Wear Characteristics of the Fe-17Mn Alloy with Various Phases (Fe-17M 합금의 상에 따른 미끄럼 마멸 거동의 변화)

  • Lee J. E.;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • It is reported that $\varepsilon$ (HCP) and $\gamma$ (FCC) phases of a Fe-17Mn alloy transform to $\alpha'$ phase, which has BCC structure, under a deformation condition. In this study, we investigated the effect of strain-induced-transformed $\alpha'$ phase on sliding wear of the Fe-17Mn alloy that originally had e and y phases. Wear tests of the materials were carried out using a pin-on-disk wear tester at various loads of 0.5N-50N under a constant sliding speed condition of 0.38m/s against glass $(83\%\;SiO_2)$ beads. The sliding distance and radius were loom and 9 mm, respectively. Wear rate of the Fe-17Mn alloy was calculated by dividing the weight loss, measured to the accuracy of $10^{-5}g$ by the measured specific gravity and sliding distance. Worn surface and wear debris of the specimens were examined using an SEM and XRD. During the wear, $\alpha'$ phase of BCC structure was formed by strain-induced transformation when the applied wear load exceeded critical values. The $\alpha'$ phase formed by the strain induced transformation increased the wear rate of the Fe-17Mn alloy.

  • PDF