• Title/Summary/Keyword: wear loss

Search Result 415, Processing Time 0.023 seconds

A Maintenance Model Applying Loss Function Based on the Cpm+ in the Process Mean Shift Problem in Which the Production Volume Decreases (생산량이 감소하는 공정평균이동 문제에서 Cpm+ 기준의 손실함수를 적용한 보전모형)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.45-50
    • /
    • 2021
  • Machines and facilities are physically or chemically degenerated by continuous usage. The representative type of the degeneration is the wearing of tools, which results in the process mean shift. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore, a preventive maintenance is necessary at some point. The problem of determining the maintenance period (or wear limit) which minimizes the total cost is called the 'process mean shift problem'. The total cost includes three items: maintenance cost (or adjustment cost), non-conforming cost due to the non-conforming products, and quality loss cost due to the difference between the process target value and the product characteristic value among the conforming products. In this study, we set the production volume as a decreasing function rather than a constant. Also we treat the process variance as a function to the increasing wear rather than a constant. To the quality loss function, we adopted the Cpm+, which is the left and right asymmetric process capability index based on the process target value. These can more reflect the production site. In this study, we presented a more extensive maintenance model compared to previous studies, by integrating the items mentioned above. The objective equation of this model is the total cost per unit wear. The determining variables are the wear limit and the initial process setting position that minimize the objective equation.

Macroscopic Wear Behavior of C/C and C/C-SiC Composites Coated with Hafnium Carbide

  • Lee, Kee Sung;Sihn, Ihn Cheol;Lim, Byung-Joo;Lim, Kwang Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.429-434
    • /
    • 2015
  • This study investigates the macroscopic wear behaviors of C/C and C/C-SiC composites coated with hafnium carbide (HfC). To improve the wear resistance of C/C composites, low-pressure chemical vapor deposition (LPCVD) was used to obtain HfC coating. The CVD coatings were deposited at various deposition temperatures of 1300, 1400, and $1500^{\circ}C$. The effect of the substrate material (the C/C substrate, the C/C-CVR substrate, or the C/C-SiC substrate deposited by LSI) was also studied to improve the wear resistance. The experiment used the ball-on-disk method, with a tungsten carbide (WC) ball utilized as an indenter to evaluate the wear behavior. The HfC coatings were found to effectively improve the wear resistance of C/C and C/C-SiC composites, compared with the case of a non-coated C/C composite. The former showed lower friction coefficients and almost no wear loss during the wear test because of the presence of hard coatings. The wear scar width was relatively narrower for the C/C and C/C-SiC composites with hafnium coatings. Wear behavior was found to critically depend on the deposition temperature and the material. Thus, the HfC-coated C/C-SiC composites fabricated at deposition temperatures of $1500^{\circ}C$ showed the best wear resistance, a lower friction coefficient, and almost no loss during the wear test.

Effects of Tensile Properties and Microstructure on Abrasive Wear for Ingot-Slicing Saw Wire (잉곳 슬라이싱용 Saw Wire의 연삭마모에 미치는 인장특성과 미세조직의 영향)

  • Hwang, Bin;Kim, Dong-Yong;Kim, Hoi-Bong;Lim, Seung-Ho;Im, Jae-Duk;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.334-340
    • /
    • 2011
  • Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 ${\mu}M$ diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.

Impact and Wear Behavior of Side Plate of FRP Ship (FRP선박 외판재의 충격 및 마모 거동)

  • Kim, H.J.;Kim, J.D.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-128
    • /
    • 2009
  • The effects of temperature and initial crack length on the impact fracture behavior for the side plate material of FRP ship were investigated. And the effects of the counterpart roughness and sliding distance on the volumetric wear of same material were investigated as well. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decreasing the temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increasing the initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$. It is believed that sensitivity of notch on impact fracture energy were increased with decreasing the temperature of specimen. With increasing the sliding distance, the transition sliding distance, which displayed different aspect on the friction coefficient and the volumetric wear loss, were found out. Counterpart roughness had a big influence on the wear rate at running in period, however the effect of counterpart roughness became smaller with sliding speed increase in. Volumetric wear loss were increased with increasing the applied load and the counterpart roughness.

  • PDF

Wear Characteristics of Carburized SCM415 Steel for Control Valve (컨트롤 밸브용 침탄 SCM415강의 마멸 특성)

  • Lee, Jeong Won;Na, Seong Hyeon;Yoon, Dong Hyun;Han, Sun Hyoung;Kim, Hyung Gong;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.873-878
    • /
    • 2016
  • SCM415 steel for the control valve undergoes wear because of continuous movement between the valve and valve case. The wear of the valve interrupts the performance of the valve, and decreases the service life. In this study, wear characteristics of the as-received and carburized SCM415 steels are evaluated. The wear tests are conducted for various temperatures and loads using a reciprocating wear tester. From these results, wear loss, specific wear rate, and coefficient of friction are analyzed. The wear mechanism was analyzed by SEM. The interaction effects between loads and temperatures on wear loss are determined for analysis of variance using MINITAB.

Tribological Characteristics of Ceramic Coated High Power Brake Discs (세라믹 코팅 고에너지 제동 디스크의 트라이볼로지적 특성)

  • 이희성;강부병
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.305-311
    • /
    • 2002
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. A braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two types of brake with different sizes in stop and hold braking modes. Plasma spray coating technique was also used to coat the discs with ceramic powder. During the test four commercial brake pads were coupled with discs. Ceramic coated discs showed good stability in friction coefficient at high speed and high energy braking conditions. But they caused large wear loss of pad mass compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc. it showed fluctuating friction coefficient at high speed but small wear loss of pad mass compared with ceramic coated discs.

Braking Performance of Ceramic Coated Discs

  • Kang, B.B.;Lee, H.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.429-430
    • /
    • 2002
  • In this study, three kinds of brake: discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Plasma spray coating technique was used to coat ceramic powder on the discs. In the test, four commercial sintered brake pads were coupled with discs. Ceramic coated discs have shown good stability in friction coefficient at high speed and high energy braking conditions. However, ceramic coated discs caused more wear loss of pad mass than the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. Steel disc showed fluctuating friction coefficient at high speed but less wear loss of pad mass than ceramic coated discs.

  • PDF

Experimental Analysis of Ceramic Coated High Power Brake Discs (세라믹 코팅 고에너지 제동 디스크의 마찰특성 연구)

  • 강부병;이희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.97-107
    • /
    • 1998
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two sizes of brake discs in stop and hold braking modes. And Plasma spray coating technique was used to coat ceramic powder on the discs. In the test four commercial brake pads were coupled with discs. Ceramic coated discs had shown good stability in friction coefficient at high speed and high energy braking conditions. But they caused large pad mass wear loss compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc, it had shown fluctuating friction coefficient at high speed but a fittie pad mass wear loss compared with ceramic coated discs.

  • PDF

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.

Wear Mwarsurement of Single Crystal Diamond Tool Using Image Processing (영상처리를 이용한 초정밀가공용 다이아몬드 공구의 마멸 측정)

  • 양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.135-139
    • /
    • 1996
  • In this a paper, a new method to measure the wear of the single crystal diamond(SCD) tool using image processing is presented. To increase resoultion, high magnifying lens is used and to enlarge the measurement field of view, a image region matching method is applied. The shape of SCD tool is modeled by mathematical analysis. Cutting edge chipping and wear are calculated by the model. This method is proved to be efficient in detecting a few micron of wear and cutting edge loss by chipping along the whole cutting edge.

  • PDF