• Title/Summary/Keyword: wear experiment

Search Result 430, Processing Time 0.024 seconds

A Study on the Lubricational Characteristics of Automotive Piston Motions With $MoS_{2}$ and PTFE Coating Materials ($MoS_{2}$와 PTFE 코팅재료에 의한 자동차 피스톤 운동의 윤활특성 연구)

  • Oh, Seong-Mo;Mun, Sang-Don
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.57-62
    • /
    • 2007
  • The lubricational characteristics about friction wear has an effect on the material quality of surface. In this paper, we studied the lubricational characteristics through the surface modification experiment by spray coating the surface with $MoS_{2}$ and PTFE solid lubricants. In the case of $MoS_{2}$ and PTFE coating, the friction coefficient of Journal is lower than that for noncoating so the friction characteristics is excellent. In particular, the beginning characteristics of $MoS_{2}$ coating is excellent, and in the case of PTFE coating, seizure dose not appear seizure. $MoS_{2}$ and PTFE coating are excellent in the extreme pressure at high load. The wear characteristics is excellent in the following order; PTFE < $MoS_{2}$ < Non Coating. For Non coating, seizure appears at the beginning due to the heat, but in the case of $MoS_{2}$ and PTFE coating, it will have the excellent heat stability even at high temperature.

The change of surface properties of nitrogen implanted chromium steel in high temperature environment (고온 이온주입된 크롬강의 표면특성변화)

  • Lee, Chan-Young;Kim, Bum-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.403-403
    • /
    • 2008
  • This article reports changes in the mechanical properties of chromium steel after nitrogen implantation at high temperature. The samples are implanted with 120keV N-ion at doses ranging from $1\times1080$ to $4\times1080ions/cm^2$ and at substrate temperature ranging from 25 to $400^{\circ}C$. Nano-hardness and AES(Auger electrons spectroscopy) were measured from nitrogen ion implanted layer. The sliding wear and impact wear properties of the implanted samples were also measured. The results revealed that the hardness and mechanical properties of ion implanted samples depend strongly on the ion doses and implantation temperature. The hardness of the nitrogen implanted sample with 120keV, $4\times10^{18}ions/cm^2$, $335^{\circ}C$ was measured to be approximately 20 GPa, which is approximately 5 times higher than that of un-implanted sample (H=3.8 GPa). Also, the sliding wear and impact wear properties of nitrogen implanted samples were greatly improved. Detailed experiment results will be presented.

  • PDF

Evaluation of die life during hot forging process (열간 단조 공정의 금형 수명 평가)

  • 이현철;박태준;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

Tribological characteristics of WC/C multilayer films with various environments (WC/C 박막 코팅의 환경변화에 따른 트라이볼로지적 특성)

  • 이은성;김석삼;김종국
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.78-87
    • /
    • 2001
  • The friction and wear behaviors of WC/C multilayer coating were investigated by using a pin on disk type tester. The experiment was conducted by using silicon nitride (S $i_{3}$ $N_{4}$) as a pin material and WC/C multilayer coating on bearing steel (STB2) as a disk material, under various environments that are atmospheric conditions of high vacuum( 1,3$\times$10$^{-4}$ Pa), medium vacuum( 1.3$\times$10$^{-l}$Pa). ambient air( 10$^{5}$ pa)(3 types) and relative humidity(2~98%) conditions. The results showed that WC/C coating fracture was suddenly increased with increasing degree of vacuum, because of high adhesion. So, WC/C coating could not be displayed their ability as solid lubricant. WC/C coating could be displayed better abilitv as solid lubricant with increasing relative humidity. because of oxide film, size and shape of wear debris. The friction coefficient and specific wear rate became better about RH 50%.%.

  • PDF

Analysis of Slip Displacement and Wear in Oscillating Tube supported by Plate Springs (튜브진동 시 판스프링 지지부의 미끄럼변위와 마멸 분석)

  • Kim Hyung-Kyu;Lee Young-Ho;Song Ju-Sun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.41-49
    • /
    • 2003
  • Tube oscillation behaviour is experimentally investigated for the study on the fuel rod fretting that is caused by the flow-induced vibration in nuclear reactor. The experiment was conducted in all at room temperature. The specimen of tube assembly was supported by plate springs which simulated the spacer grids and fuel rods of a fuel assembly. To investigate the influence of contact condition between the grids and rods, normal load of 10 and 5 N, gaps of 0.1 and 0.3 mm were applied. The range of the oscillation at the center of the fuel rod specimen was varied as 0.2, 0.3 and 0.4 mm to simulate the fuel rod vibration due to flow. Displacements near the contact were measured with four displacement sensors during the tube oscillation. As results, the shape of oscillation (phase) varied depending on the contact condition. The oscillation displacement increased considerably from the contact to gap condition. The displacement increased further as the gap size increased. It is regarded that the spring shape influences the tube oscillation behaviour. Simple calculation showed that the slip displacement was very small. Therefore, cumulative damage concept is necessary for the fuel rod wear. The mechanism of plowing is thought required to explain the severe wear in the case of gap existence.

  • PDF

Changes in Tensile Strength and Stiffness of Selected Durable Nonwoven Fabrics due to Abrasion and Laundering* (내구성 부직포의 마찰 및 세탁에 의한 인장강도 및 강연도 변화)

  • Kim Charles J.;Hargett Evelyn
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.3
    • /
    • pp.35-44
    • /
    • 1985
  • This research explored the effects of abrasion, laundering, and abrasion/laundering interaction upon wear of 15 durable nonwoven fabrics. Wear was measured in terms of changes in tensile strength and stiffness. The test materials consisted of nine different dry-laid commercial interfacing fabrics of various fiber contents and six spunbonded poyester and polypropylene fabrics. Three fixed levels of abrasion and four fixed levels of laundering made up the 3$\times$4 factorial analysis used for the experiment and the analysis of variance. Findings revealed that abrasion had a greater effect than laundering on strength and stiffness of the tested fabrics. Laundering seemed related to the particular fibers used and to the fixation quality of fiber bonds. Spunbonded webs performed better than dry-laid webs in retaining tensile strength Stiffness change occurred more readily than strength change. Lighter, flexible, stretchable fabrics seemed less easily abraded than heavier, stiff, less stretchable fabrics. The interfacing fabrics of 70/20/$10\%$ nylon/polyester/rayon blends with high crosswise stretchability effectively resisted wear caused by abrasion and laundering. Further research is recommended to study the effects of longer abrasion periods and additional laundering cycles o,1 wear qualities of nonwoven fabrics. Additional factors such as amount and fixation methods of bonding agents, the effect of shear distortion, seam construction, and drycleaning solvents could also be studied.

  • PDF

Wear Comfort Evaluation on Water-vapor-permeable (WVP) Garments Using a Movable Sweating Thermal Manikin (발한써멀마네킨을 이용한 투습방수의류의 착용쾌적성 평가)

  • Kang, Inhyeng;Lee, Han Sup
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1095-1106
    • /
    • 2013
  • This study evaluated the wear comfort properties of water-vapor-permeable (WVP) garments using a movable sweating thermal manikin. Manikin tests were performed in a climatic chamber (temperature T=20, $35{\pm}0.5^{\circ}C$ and relative humidity $H=50{\pm}10%$) using seven sportswear outfits (a long sleeve shirts and a long pants) made with seven different WVP fabrics. Physiological responses of wear trials could be correlated with measurement parameters of the thermal manikin experiment; subsequently, a regression model that represented a final comfort sensation could be obtained. The regression model developed in this work is based on thermal manikin measurements; consequently, it provides an independent comfort sensation level in a relatively short time at a low cost while maintaining the reproducibility of results. It translates into more actual choices for sportswear manufacturers and sportswear consumers.

The Effect of Residual Stresses on Surface Failure and Wear (잔류응력의 표면파손과 마멸에 대한 영향)

  • Lee, Yeong-Je;Kim, Jin-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.677-682
    • /
    • 2002
  • Break-in is an intentional treatment to enhance the performance life of machinery parts and to maintain static friction behavior. Most studies on break-in have concerned only about surface conditions such as roughness or film formation. But the exact mechanism of break-in has not been found yet. Friction, scuffing behavior and wear of AISI 1045 were studied in relation to break-in and residual stress. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were carried out using a constant load of 730N. In the break-in procedure the step load was applied from 100N to 200N. In this experiment, it was found that the break-in helps compressive residual stress to be formed well enough to enhance the scuffing life during the scuffing test. Specimens that had high compressive residual stress induced by shot-peening show better wear resistance than those were not shot-peened. Results of scuffing test, break-in procedure and wear amount in relation to residual stress have been discussed.

Wear Characteristics for Rod and Nozzle of Jetting Dispenser Driven by Dual Piezoelectric Actuators Under High Frequency with Phosphor-containing Liquid (형광체 함유 용액 고속 토출 조건에서의 듀얼 압전 디스펜서 공이와 노즐의 마모 특성 평가)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;An, Jun-Wook;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.52-58
    • /
    • 2017
  • An ultra-high precise ejection process is essential in a dispensing system for fabricating various precision parts such as a semiconductor, LED, and camera module. The size of such parts has been decreasing, which implies that a precise ejecting technique is required. A phosphor-containing liquid is ejected via a dispenser using dual piezoelectric actuators that are used for generating a high-speed dispensing mechanism. The rod and nozzle continuously contact in high speed to eject the liquid. However, the high-strength filler or phosphor in the liquid causes wear on the surfaces of the rod and nozzle during the dispensing process. As a result, the ejection reliability decreases as the wear on the surfaces increases. Therefore, it is necessary to estimate the wear characteristics of the rod and nozzle via an experiment and FE analysis. Reliability rests up to 1,000 cycles are conducted under relatively severe conditions. The flow rate and surfaces roughness of the rod and nozzle are measured in each ejection cycle. The surface images and wear volume are obtained before and after the tests and the ejection reliability is confirmed by measuring the flow rate of the liquid. The experimental results show that the ejection reliability is maintained up to 1,000k cycles; these results are validated by the simulation results.

An Analysis on the Influence of Wheel Flange Wear on the Vibration of EMU (전동차 차륜답면 마모에 따른 차량 진동 특성 영향 분석)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee;Park, Tae-Won;Yang, Chil-Sig
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.230-235
    • /
    • 2009
  • We have conducted an experimental study to analyze characteristics of the wheel profile wear and an influence of the wheel flange wear on the vehicle's vibration characteristics. In experiment with EMU, wheel profile wear is severe at the beginning of the commercial operation. In this stage, the variations of the wheel dimension parameters and equivalent conicity is changed rapidly. Along with a mileage of the test vehicle, the wear of the wheel flange is increased and also the vibration level of the car-body is increased. The peak-peak mean value of the body vibration is estimated as good level, but the level is approached at the limit of the good level as mileage increases. Especially, the peak-peak maximum value of the body vibration shows the distinct increase of vibration level.