• Title/Summary/Keyword: wear conditions

Search Result 1,103, Processing Time 0.03 seconds

The Effects of Heat-treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼 마모특성에 미치는 열처리조건의 영향)

  • Lee, H.Y.;Bae, J.S.;Kim, Y.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.405-411
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metaliurgy(PM-HSS) had been eluminated in auther's previous paper. In addition, it is generally known that the wear properties of materials have been influenced by heat-treating conditions as well. Therefore, a study has been done to clarify the effects of heat-treating conditions on wear properties of PM-HSS. The wear tests have been performed under the same conditions as the previous paper using heat-treated PM-HSS(5%Co-1%Nb) with different quenching and tempering temperatures. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However, tempering temperature is not sensitive to the wear resistance in the range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms due to not only the quenching aging but also dispersion-hardening is improved.

  • PDF

A Study on Friction and Wear Characteristics of Welded Rails Under Various Sliding Environments (레일 용접부의 미끄럼 환경변화에 따른 마찰 및 마멸특성 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.178-183
    • /
    • 1999
  • This paper presents friction and wear related results of thermite and gas pressure welded rails under various environmental contact conditions. A welded rail which was fabricated by thermite welding and gas pressure one has been tested over full range of test conditions in a pin-on-disk wear testing machine. The results show that the friction coefficient and wear rates of a welded rail are heavily dependent on the contact pressures and sliding environments for two welding methods such as thermite and gas pressure weldings.

A Study on the Rail Materials Technology for Subway Based on its Sliding Wear Behavior (지하철 레일의 미끄럼 마모거동을 고려한 재료설계에 대한 고찰)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.364-369
    • /
    • 2014
  • To assess the wear behavior of rails against subway rail car wheels, we investigate the sliding wear behavior of pins derived from two types of rails (normal rails and heat-treated rails) against a disc derived from a subway rail car wheel, using a pin-on-disc-type tribometer. We base the sliding wear test conditions on the sliding conditions for wheel flange-rail gauge corner contact. We demonstrate the remarkable transition in the wear behavior of the pins derived from the rails, from severe wear to mild wear, as a function of the sliding distance. The wear rate of the heat-treated rail material in the running-in wear region is much lower than that of the normal rail material. Furthermore, the wear rates of the pins in the running-in wear region decrease with increasing hardness and with decreasing sliding speed. However, there is little difference between the heat-treated rail pin and the normal rail pin in the wear rate in the steady-state wear region. Stricter controls on the decarburized layer beneath the surface of rails are required to reduce the wear rate in the running-in wear region.

Relationship between Kinesiotaping and compression wear for postural balance in healthy men: a cross-sectional study

  • Choi, Nak-Hoon;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2020
  • Objective: Compression wear is an external aid which promotes performance and recovery, diminishes muscular microtrauma, reduces muscle fiber recruitment, improves neuromechanics, enhances coordinative activities, and reduces the perceived exertion. The purpose of this study was to investigate the relationship between athletic taping and compression wear on dynamic postural balance in healthy young men. The hypothesis was that the athletic taping and compression wear would affect dynamic postural balance, with athletic taping having a different effect on dynamic postural balance in healthy young adults. Design: Cross-sectional study. Methods: Thirty-seven healthy young men participated in this study. To examine the association between athletic taping and compression wear, 3 clinical measurement tools, including 5 times sit-to-stand (5xSTS), one-leg standing (OLS) test, and Y-balance test (YBT) in 5 different conditions, namely (1) non-supporting, and support with (2) athletic taping, (3) regular compression wear, (4) silicon compression wear, and (5) double-fiber compression wear were used. Results: The distance of the Y-balance test (YBT) on both the dominant and non-dominant sides showed a statistically difference among the 5 supporting conditions (p<0.05). The distance measured via the YBT in the non-support condition was significantly different than that in the other four supporting conditions (p<0.05). However, 5xSTS and OLS were not significantly different in these supporting conditions. Conclusions: The results of this study suggest that athletic taping, silicon compression wear, and double-fiber compression wear were more effective for dynamic balance than non-supporting and regular compression wear.

The Effects of Spray Conditions on Sliding Wear Characteristics of Plasma Sprayed $Al_2O_3-40%TiO_2$Coating (Plasma용사한 $Al_2O_3-40%TiO_2$의 미끄럼마모특성에 미치는 용사조건의 영향)

  • 이한영;노정균;배상규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.80-88
    • /
    • 2000
  • The plasma spray technics has known as one of the surface modification methods to improve the mechenical properties or the functional charactristics of materials. This paper has been aimed to investigate the effects of plasma sprayed conditions, such as spray distance and arc power level, on sliding wear properties of plasma sprayed $Al_2$O$_3$-40%TiO$_2$coating layer. The sliding wear test using pin-on-disc type wear machine, has been conducted in several sliding speed for coating layer sparyed under different conditions. The result of this paper is that the wear resistance of plasma sprayed $Al_2$O$_3$-40%TiO$_2$coating layer is fluctuated with tile spray distance and the arc power level. The wear resiatance could be improved with decreasing the spray distance and with increasing the arc power level.

  • PDF

Friction and Wear Behavior of Ceramics under Various Sliding Environments (세라믹 재료의 미끄럼 환경 변화에 따른 마찰 및 마멸 거동)

  • 장선태;이영제
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.11-23
    • /
    • 1995
  • The friction and wear behavior of $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used for a wear test method. Using the servo-motor, the sliding speed did not alternate due to the frictional forces. Three kinds of loads were selected to watch the variation of the wear rates and the frictional forces under a constant speed. Three kinds of sliding conditions were used to see the effects of the oxidation and the abrasion. The dominant wear mechanisms of $Al_{2}O_{3}$ were the abrasion and the formation of transfer layers. The abrasion has a great effect on the wear of SiC. The wear of $Si_{3}N_{4}$ was due to the asperity-failure and the oxidation. Also, the wear rate of each ceramic is shown to be related to the frictional power provided to the tribological system.

Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites (6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres (상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석)

  • Koo, B.W.;Gwon, H.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.

The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material (금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측)

  • 조재성;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF

Wear Analysis of a Vibrating Tube supported by Thin Strip Springs incorporating the Supporting Conditions (얇은 판 스프링에 의해 지지되는 튜브의 진동 시 지지조건에 따른 마멸분석)

  • Kim, Hyeong-Gyu;Ha, Jae-Uk;Lee, Yeong-Ho;Heo, Seong-Pil;Gang, Heung-Seok
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.63-70
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally. The wear is caused by the vibration of the tube while the springs support it. As for the supporting conditions, applied are the contacting normal force (P) of 5 N, just-contact (P = 0 N) and the gap of 0.1 mm. The gap condition is tried far considering the influence of simultaneous impacting and sliding on wear. Results show that the wear volume increases in the order of the gap, the just-contact and the 5 N conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour. The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. Wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map previously obtained.

  • PDF