• 제목/요약/키워드: wear coefficient

검색결과 787건 처리시간 0.031초

탄소 섬유 복합재의 마찰 및 마모 특성에 미치는 하중 효과 (Effect of load on the wear and friction characteristics of a carbon fiber composites)

  • 고성위;양병춘;김형진;김재동
    • 수산해양기술연구
    • /
    • 제40권4호
    • /
    • pp.344-350
    • /
    • 2004
  • 탄소 섬유강화 에폭시기지 복합재의 경면 가공한 스테인리스강 상대재와 마찰과 마모에 바탕을 둔 연구에서는 다음과 같은 결론을 얻었다. (1) 복합재의 비마모율은 하중이 증가하면 N방향와 P방향에서는 증가하는 경향을 보이며,AP방향에서는 감소한다. 이것은 마모 메카니즘의 영향으로 속도가 증가하면 마모 이착막의 생성이 빨라져 이착막 속의 탄소섬유가 윤활제의 역할을 하기 때문이다. (2) 복합재의 마찰계수는 하중이 증가하면 N방향과 AP방향에서는 하중 39.2N까지 증가하다가 그 이상의 하중에서는 감소되며 AP방향에서는 하중이 증가함에 따라 서서히 증가하며, 또한 그 값은 N방향에서 가장 크고, AP방향이 가장 적다. (3) 일방향 탄소섬유 강화 복합재의 마모 거동에 미치는 하중의 효과는 다르며 마찰초반에 발생한 섬유에 의한 쟁기질과 섬유 굽힘 및 미소크랙에 의한 섬유 균열과 파괴에 따른 마모 메카니즘의 형태에 의한 것이다.

카본 나노튜브 및 알루미나 첨가제가 윤활 및 마모특성에 미치는 영향에 대한 연구 (Study on Influence of Carbon Nanotubes and Alumina Additives to Lubrication and Wear Characteristics)

  • 윤창석;오대산;김현준
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.220-227
    • /
    • 2017
  • In this work, carbon nanotube and nano-size alumina particle are exploited as additive for lubrication experiment. We used pin-on-disk type tribometer to investigate the tribological characteristics of lubricants with respect to additives and rotational speed. We conducted more than 15 trials of tribotests for two hours for each specimen to obtain stable and accurate frictional force and to create measurable wear track on the substrate. We conducted tests at the boundary/mixed lubrication regime to evaluate the influence of additives on the tribological characteristics. We found that the friction coefficient decreased as the rotational speed increased and as additives were added. In particular, the reduction of friction by adding additives was more significant at low rotational speed than at high rotational speed. We speculate that the additives helped to separate and protect the two contacting surfaces at low speed, while the influence of additives was not significant at high speed since sufficiently thick lubricant film was formed. The wear of the substrate was also reduced by adding additives to the lubricant. However, in contrast to friction, the amount of wear at high rotational speed was less when alumina particles were added to the lubricant than the amount of wear at low speed. We speculate that the increased wear at low rotational speed is as a result of the intermittent abrasive wear caused by alumina particles with uneven shape, while the reduced wear at high speed is as a result of sufficient film thickness which prevented the abrasive wear.

Maxillary first molar wear: a longitudinal study of children

  • Kim, Won-Hee;Nam, Shin-Eun;Park, Young-Seok;Lee, Seung-Pyo
    • Anatomy and Cell Biology
    • /
    • 제51권4호
    • /
    • pp.251-259
    • /
    • 2018
  • The aim of this study is to examine the correlation between tooth wear and age by quantitatively measuring maxillary first molar wear in children. A total of 150 maxillary dental models were analyzed in 30 subjects (male, 11; female, 19) with an age range of 6-14 years. Maxillary first molar wear were assessed based on area, volume and the shortest distance from the buccal occlusal plane to the central pit point (BCPH). The area and volume of the tooth cusps were measured at four different offset-plane heights (0.2, 0.4, 0.6, and 0.8 mm). Relationship between age and the amount of wear or BCPH were statistically analyzed. Correlation and regression analyses were also performed, and age estimation was obtained with linear regression analysis. Repeated measures analysis of variance (ANOVA) revealed significant differences between age and the amount of wear based on area, volume, and offset-plane height. Except age of 8 and 10, 12 and 14's 0.2-mm offset-plane-measured volume, all area and volume measurement of all ages and offset-plane height showed a significant amount of increase. Wear speeds were calculated using the BCPH. Among age and measurement variables, the correlation coefficient was strongest when the volume was measured from the 0.4-mm offset-plane. As age increases, the amount of wear, as quantified by area and volume measurements, also increases. According to this study, a regression equation that can be used for age estimation is follows: Age $(y)=0.16{\times}0.4V+0.85$ ($R^2=0.490$) using volume.

14톤급 휠 굴삭기 차축용 습식 다판 디스크 브레이크의 마찰특성 평가 (Estimation of Friction Characteristics of Wet-type Multiple Disc Brakes for Axle of 14 Ton Class Wheel Excavator)

  • 조연상;박흥식;홍성진;최병운;배명호
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.312-317
    • /
    • 2007
  • In general, a brake system of axle for heavy duty machine as a wheel excavator makes use of wet-type multiple disk brakes. These disk bakes are very important parts of heavy duty machine because they are advanced in durability and braking power, and can be designed compactly. Thus, we designed and made wet-type multiple disk brakes of axle for the 14ton class wheel excavator to be localization of these imported all. These disk brakes were made a comparative test with the existing disk brakes by the SAE No.2 dynamometer, and the friction characteristics as dynamic and static friction coefficient and wear depth of friction paper were measured.

Experimental Investigation of Porous Bearings Under Different Lubricant and Lubricating Conditions

  • Durak, Ertugrul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1276-1286
    • /
    • 2003
  • The performance of porous bearing under different lubricants and lubricating conditions was experimentally investigated in this study. In order to carry out the experiments, a new test rig was designed to determine the tribological properties of based sintered bronze journal bearings that were manufactured by powder metallurgy (P/M) techniques. To determine the effects of lubricating conditions with and without oil supplement (OS) on the tribological characteristics of these bearings under static loading and periodic loadings, some experiments were carried out using different lubricants. In the tests, pure base oil (SAE 20W50), two fully formulated commercial engine oils (SAE20W50) and lubricating oils with commercial additive concentration ratio of 3% were used. The worn surfaces of test bearings were examined using optical microscopy. Experimental results showed that the change in friction coefficient was more stable and in smaller magnitude under static loading than that of periodic loading. In addition, the friction coefficient and the wear rate conducted with base oil resulted in higher values than those of fully formulated oils with and without OS lubricating conditions. The experimental results obtained in this study indicated that the correct selection of lubricant and suitable running conditions were very important on the tribological characteristics of porous bearings.

선박 엔진의 실린더 라이너의 손상 진단을 위한 신경회로망의 적용 (Application of Neural Network for Damage Diagnosis of Marine Engine Cylinder Liner)

  • 조연상;구현호;박준홍;박흥식
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.356-363
    • /
    • 2014
  • Marine diesel engines operate in environments in which damage easily occurs from corrosion. Recently, damage to cylinder liners has increased from corrosion wear caused by increased engine power. This damage can cause serious problems in the economy. Thus, many researchers have treated and studied damaged cylinder liners. However, a method is necessary for real-time monitoring of damage to cylinder liners during operation of the engine, before serious damage can occur. This study carries out reciprocating friction and wear tests on a cast iron specimen under various corrosion atmospheres and verifies the variations of friction coefficient and friction surface. Additionally, the friction coefficient and friction status are predicted by using a neural network that learns the vibration and frequency spectrum data from an acceleration sensor. According to our conclusions, amplitude is distributed highly at high frequencies, and values of standard deviation and kurtosis are high when damage to the friction surface is serious. The accuracy rate of the friction coefficient predicted by the neural network is over 80% of the real measured value without NaCl, and application of the neural network is very effective for diagnosing the friction condition and damage to the cylinder liner.

포토리소그래피 공정에 의한 마이크로 패턴 제작과 tribology 특성 연구 (A Study on Micropattern Fabrication and Tribology Characteristics by Photolithography Process)

  • 장태환;박진혁;권영우;조보람;김태규
    • 열처리공학회지
    • /
    • 제36권3호
    • /
    • pp.137-144
    • /
    • 2023
  • Micro electro mechanical systems (MEMS) and precision machines require excellent friction and wear characteristics to improve energy efficiency generated during sliding motion. In this study, DLC thin film with high hardness and low friction was deposited on STS304 substrate material by CVD method, and dot-shaped convex and concave micropatterns were fabricated by photolithography process. The diameter of the pattern was 20 ㎛, the pitch was 40 ㎛, and a pattern having a mesh type arrangement was fabricated and an abrasion test was performed. The results of the wear test on the micro pattern confirmed that the friction coefficient characteristics were improved compared to STS 304 and DLC thin films. In addition, in this result, the micro-pattern showed 11.4% more improved friction coefficient than the DLC thin film. The friction coefficient characteristics for convex and concave patterns of the same size showed almost similar results.

나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가 (Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor)

  • 조한종;조용일;조상원;이재근;박민찬;김대진;이광호
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

Effect of Lubricant with Nanodiamond Particles in Sliding Friction

  • Adzaman, M.H.;Rahman, A.;Lee, Y.Z.;Kim, S.S.
    • Tribology and Lubricants
    • /
    • 제31권4호
    • /
    • pp.183-188
    • /
    • 2015
  • This paper presents the experimental effects of lubricant with nanodiamond particles in sliding friction. In order to improve the performance of lubricants many additives are used, such as MoS2, cadmium chloride, indium, sulfides, and phosphides. These additives are harmful to human health and to the environment, so alternatives are necessary. One such alternative is nanodiamond powder, which has a large surface area. In order to investigate the effect of nanodiamonds in lubricants under sliding friction, they are dispersed in the lubricant at a variety of concentrations (0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1 wt%) using the matrix synthesis method. Friction and wear tests are performed according to the ASTM G99 method using a pin-on-disc tester at room temperature. The specimens used in this experiment are AISI 52100 ball bearings and AISI 1020 steel discs. During the test, lubricant mixed with nanodiamond is supplied constantly to keep the two bodies separated by a lubricant film. To maintain boundary lubrication, the speed is set to 0.18 m/s and a load of 294 N is applied to the disc through the pin. Results are recorded by using workbench software over the test duration of 10 minutes. Experimental results show that when the concentration of nanodiamond increases, the coefficient of friction decreases. However, above a nanodiamond concentration of 0.5 wt%, both the coefficient of friction and wear volume increase. From this experiment, the optimum concentration of nanodiamond showing a minimum coefficient of friction of 0.09 and minimum wear volume of 0.82 nm2 was 0.5 wt%.

나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가 (Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressors)

  • 조상원;김홍석;안영철;이정언;이재관;이형국;이병철;김동한;박진성
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1219-1224
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with n mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear Lising nano-oil is evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oilenhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF