• Title/Summary/Keyword: wear coefficient

Search Result 780, Processing Time 0.034 seconds

Tribological Properties of Aqueous Solutions Composed of Aminated Olive Oil Derivative (수용성 아민화 올리브유 유도체의 트라이볼로지적 특성고찰)

  • Choi, Ung-Su;Lee, Sang-Soon
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.272-276
    • /
    • 2010
  • Aminated oilve oil derivative as the new organic disperse phases of the water soluble metal working fluid has been synthesized and tribological properties of the aqueous solutions composed of aminated olive oil derivative investigated using Four Ball Wear Tester and Falex EP Tester. The formulated aqueous solutions showed higher antiwear and extreme pressure properties and also lower friction coefficient. On the basis of the the results, water soluble aminated oilve oil derivative showed excellent tribological properties due to the polarizability of oleic acid derivative composed of majority part in oilve oil.

Tribological Properties of Alumina/Graphite Composites (Alumina/graphite 복합체의 마찰마모 특성)

  • 백용혁;정종인;박용갑;김주영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.380-386
    • /
    • 1997
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as seal rings, pump parts, thread guides, and so on. In this study, the effects of graphite addition on the mechanical and tribological properties of alumina/graphite composites were investigated. The composites were prepared by the adding of graphite powder to the mixture of Al2O3, talc and calcium carbonate. Bending strength, water absorption, friction coefficient, the amount of worn out material at a certain time, and maximum surface roughness(Rmax) of the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The melt of Al2O3-CaO-MgO-SiO2 system was shown over 10 vol% graphite composition. As the amount of the graphite is increased, needle like crystals of mullite were formed and grown. We obtained the good properties of friction coefficients and wear resistance at the powder composition containing 15 vol% of graphite.

  • PDF

Systematic Finishing Process of Injection Molds (사출금형 사상공정의 체계화)

  • Park Minsoo;Kim Mintae;Lee Haesung;Chu Chongnam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.50-56
    • /
    • 2004
  • Finishing is the final process in molds manufacturing and consumes much process time. Also, it influences on surface quality of molds. But, there are few systematic methods to control the process. In this work, basic experiments were carried out to study the machining characteristics of the finishing tools. From the experiments, critical surface roughness and wear coefficient are suggested to reduce the number of finishing steps and to plan a systematic finishing procedure. Comparison experiments were carried out between the expert's method and the new method, which is based on the results of this research. From the experiments, it is verified that the systematic method takes less time and generates less form error in the machined surface than the worker's method.

Study on Dependence of Friction Characteristics of Sintered Brake Friction Materials on Graphite Shape and Ratio with regard to Speeding up Rapid Transit System (도시철도 고속화에 대비한 금속계 소결마찰재에서의 흑연 형상 및 비율에 따른 마찰특성 연구)

  • Kim, Young Kyu;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.242-247
    • /
    • 2013
  • This study aims to establish the fundamental basis for the design of materials used in high-speed trains, by using a lab-scale dynamometer to evaluate the characteristic behavior of metallic sintered friction materials in relation to the shape of graphite. The test results clearly demonstrate that when flake graphite and granular graphite are added equivalently, the average coefficient of friction is much lower, and it is less influenced by speed variation; moreover, friction wear is observed to be insignificantly low. Adding flake graphite increases the coefficient of friction, which leads to higher friction wear. In addition, the roughness of the disc surface was equivalent regardless of the shape of the graphite.

Experimental study on the braking performance of a brake shoe for power car (동력차용 브레이크슈의 제동성능에 관한 실험적 연구)

  • Kwon, Seok-Jin;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.87-92
    • /
    • 2000
  • In this paper, we investigated the braking performance of a composite brake shoe for power car. Laboratory bench test and field tests were carried out to characterize the braking performance by the parameters such as friction coefficient, wear rate, braking temperature and stopping distance. Density distribution was found to have a significant influence on the wear rate. The composite brake shoe with even density distribution showed better braking performance. The braking performance of a composite brake shoe was also compared with that of a cast iron brake shoe which is currently being used. The result indicated the performance of the composite brake shoe is better than the cast iron brake shoe.

  • PDF

Tribology Characteristics of DLC Film Based on Hardness of Mating Materials (경질탄소 필름과 대면물질 경도변화에 대한 트라이볼로지 특성)

  • Na Byung Chul;Tanaka Akihiro
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.50-55
    • /
    • 2003
  • Tribological testing of DLC films was conducted using a rotating type ball on a disk friction tester in a dry chamber. This study made use of four kinds of mating balls that were made with stainless steel but subjected to diverse annealing conditions in order to achieve different levels of hardness. In all load conditions using martensite mating balls, the test results demonstrated that the friction coefficient was lower when the mating materials were harder. The high friction coefficient found in soft martensite balls appeared to be caused by the larger contact areas. The wear track on the mating balls indicated that a certain amount of material transfer occurs from the DLC film to the mating ball during the high friction process. Raman Spectra analysis showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

  • PDF

THE STATE OF THE ART OF THE INTERNAL PLASMA SPRAYING ON CYLINDER BORE IN AlSi CAST ALLOYS

  • Barbezat, G.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • For the wear protection of cylinder bore in aluminum cast material the internal plasma spraying technology offers a new economical solution. The size and the weight of the engine blocks significantly can be decreased in comparison with the traditional cast iron sleeves. The coefficient of friction between piston ring and cylinder wall sensitively can be reduced and the wear resistance increased from several factors. The paper gives an overview of the technology from the AlSi cast alloys for engine block to the non destructive testing technology used after the machining by diamond honing. The actual results in engines of different types also will be shown. The economical advantages of the plasma spraying (or the internal coating in cylinder bore also will be discussed in comparison with the different alternatives of technology. The aspect of the market introduction also will be discussed in this paper.

  • PDF

Tribological Properties of Clay Bonded SiC (점토 결합 SiC 소결체의 마찰 마모 특성)

  • 한상준;이경희;이재한;김홍기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1027-1032
    • /
    • 1995
  • SiC had been widely applied for mechanical sealing as a sealing material. SiC sintering is commonly made of reaction sintering, presureless sintering, and hot isostatic pressing (HIP) sintering. In this investigation, however, clay bonded sintering was used to avoide any complications of the special sintering methods as mentioned above. In order to prevent harmful SiC oxidation in the clay bonded sintering, clay and frit were used to form the SiC oxidation protecting layer and graphite was added to provide high solid lubricity. As a result, the material with 6% clay (clay 5.4% and frit 0.6%) and 2~4% graphite (45 mesh) sintered at 140$0^{\circ}C$ for 3 hours, showed the following physical properties; porosity 6%, static friction coefficient 0.15, kinematic coefficient 0.1,. and specific wear rate 4.8$\times$10-8 $\textrm{mm}^2$kgf-1. On the other hand, the flexural strength was 900kgf/$\textrm{cm}^2$. This tribological characteristic properties were similar to those of the reaction sintered SiC except the flexural strength.

  • PDF

Brake Lining Can be Applied to Super High Speed Vehicle

  • Nakano, Satoru;Maejima, Takashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1305-1306
    • /
    • 2006
  • A new material was developed to achieve improvement of heat durability, improvement of wear resistance, stability of friction coefficient and reduction in aggression to counterpart, because it is difficult to maintain braking properties by using currently available materials in the train wagons used for high-speed transportation. As a result, the new material showed a stable wear resistance even in the speed range of 350km/h, where improvement was also confirmed in reduction of aggression to counterpart material by more than approximately 10%. This development was adopted for the brake lining in the Taiwan High Speed Rail project.

  • PDF

Tribological Properties of DLC film on Modified Surface by TiC Plasma Immersion Ion Implantation and Deposition (TiC 이온 주입 층에 증착된 DLC 박막의 트라이볼로지적 특성)

  • Yi, Jin-Woo;Kim, Jong-Kuk;Kim, Seock-Sam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.956-960
    • /
    • 2004
  • Effects of ion implantation and deposition on the tribological properties of DLC film as a function of implanted energies and process times were investigated. TiC ions were implanted and deposited on the Si-wafer substrates followed by DLC coating using ion beam deposition method. In order to study tribological properties such as friction coefficient and behavior of DLC film on the modified surface as a function of implanted energies and process times, we used a ball-on-disc type apparatus in the atmospheric environment. From results of wear test, as the implanted energy was increased, the friction coefficient was more stable below 0.1.

  • PDF