• Title/Summary/Keyword: weapon target assignment

Search Result 33, Processing Time 0.017 seconds

Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight (유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석)

  • Lee, Han-Kang;Jang, Jae-Yeon;Ahn, Jae-Min;Kim, Chang-Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2018
  • The study of air defense against North Korean tactical ballistic missiles (TBM) should consider the rapidly changing battlefield environment. The study for target re-designation for intercept missiles enables effective operation of friendly defensive assets as well as responses to dynamic battlefield. The researches that have been conducted so far do not represent real-time dynamic battlefield situation because the hit probability for the TBM, which plays an important role in the decision making process, is fixed. Therefore, this study proposes a target re-designation algorithm that makes decision based on hit probability which considers real-time field environment. The proposed method contains a trajectory prediction model that predicts the expected trajectory of the TBM from the current position and velocity information by using random forest and moving window. The predicted hit probability can be calculated through the trajectory prediction model and the simulator of the intercept missile, and the calculated hit probability becomes the decision criterion of the target re-designation algorithm for the missile. In the experiment, the validity of the methodology used in the TBM trajectory prediction model was verified and the superiority of using the hit probability through the proposed model in the target re-designation decision making process was validated.

Air Threat Evaluation System using Fuzzy-Bayesian Network based on Information Fusion (정보 융합 기반 퍼지-베이지안 네트워크 공중 위협평가 방법)

  • Yun, Jongmin;Choi, Bomin;Han, Myung-Mook;Kim, Su-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • Threat Evaluation(TE) which has air intelligence attained by identifying friend or foe evaluates the target's threat degree, so it provides information to Weapon Assignment(WA) step. Most of TE data are passed by sensor measured values, but existing techniques(fuzzy, bayesian network, and so on) have many weaknesses that erroneous linkages and missing data may fall into confusion in decision making. Therefore we need to efficient Threat Evaluation system that can refine various sensor data's linkages and calculate reliable threat values under unpredictable war situations. In this paper, we suggest new threat evaluation system based on information fusion JDL model, and it is principle that combine fuzzy which is favorable to refine ambiguous relationships with bayesian network useful to inference battled situation having insufficient evidence and to use learning algorithm. Finally, the system's performance by getting threat evaluation on an air defense scenario is presented.

A Mixed-Integer Programming Model for Effective Distribution of Relief Supplies in Disaster (재난 구호품의 효과적 분배를 위한 혼합정수계획 모형)

  • Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • The topic of this study is the field of humanitarian logistics for disaster response. Many existing studies have revealed that compliance with the golden time in response to a disaster determines the success or failure of relief activities, and logistics costs account for 80% of the disaster response cost. Besides, the agility, responsiveness, and effectiveness of the humanitarian logistics system are emphasized in consideration of the disaster situation's characteristics, such as the urgency of life-saving and rapid environmental changes. In other words, they emphasize the importance of logistics activities in disaster response, which includes the effective and efficient distribution of relief supplies. This study proposes a mathematical model for establishing a transport plan to distribute relief supplies in a disaster situation. To determine vehicles' route and the amount of relief for cities suffering a disaster, it mainly considers the urgency, effectiveness (restoration rate), and uncertainty in the logistics system. The model is initially developed as a mixed-integer nonlinear programming (MINLP) model containing some nonlinear functions and transform into a Mixed-integer linear programming (MILP) model using a logarithmic transformation and piecewise linear approximation method. Furthermore, a minimax problem is suggested to search for breakpoints and slopes to define a piecewise linear function that minimizes the linear approximation error. A numerical experiment is performed to verify the MILP model, and linear approximation error is also analyzed in the experiment.