• Title/Summary/Keyword: weakening

검색결과 749건 처리시간 0.027초

약계자영역에서 루엔버기관측기를 이용한 유도전동기의 속도 센서리스 고정자자속 기준제어 (Speed Sensorless Stator Flux-Oriented Control of Induction Motor In the Field Weakening Region Using Luenberger Observer)

  • 권태성;신명호;현동석
    • 전력전자학회논문지
    • /
    • 제8권5호
    • /
    • pp.375-380
    • /
    • 2003
  • 기존의 속도센서가 없는 유도전동기의 고정자자속 기준제어에서 추정된 속도가 이산화 될 때, 이산화에 의한 모델링오차 때문에 회전자속도 추정에 오차가 발생한다. 이 오차는 저역통과필터에 의해 제거되지만 추정된 속도는 과도상태에서 지연이 발생해서 약계자영역으로의 천이가 지연되는 문제가 발생하게 된다. 본 논문에서는 기존의 고정자자속 기준제어 속도 센서리스 시스템의 약계자영역에서 추정된 속도의 지연으로 발생하는 문제점을 고찰하고 또한 루엔버거관측기를 사용하여 정확한 속도 추정을 학 수 있는 방법을 제안한다.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.

A DTC Stator Flux Algorithm for the Performance Improvement of Induction Traction Motors

  • Van-Tien, Pham;Zheng, Trillion Q.;Yang, Zhong-ping;Lin, Fei;Do, Viet-dung
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.572-583
    • /
    • 2016
  • In view of the speed control characteristics of induction traction motors and the problems of direct torque control (DTC) algorithms in current applications, this paper presents a DTC algorithm characterized by a symmetrical polygon flux control and a closed loop power control in the constant-torque base speed region and constant-power field-weakening region of induction traction motors. This algorithm only needs to add a stator flux control algorithm to the traditional DTC structures. This has the benefit of simplicity, while maintaining the features of traditional algorithms such as a rapid dynamic response, uncomplicated control circuit, reduced dependence on motor parameters, etc. In addition, it obtains a smoother flux trajectory that is conducive to improvement of the harmonic elimination capability, the switching frequency utilization as well as the torque and power performance in the field-weakening region. The effectiveness and feasibility of this DTC algorithm are demonstrated by both theoretical analysis and experimental results.

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

침투류에 의한 암석시료의 함수 저감거동 연구 (I) (A Study on Decreasing Behavior of Strength & Elastic Parameters due to Water Infiltration in Rock Cores (I))

  • 조홍제;문종규;정일수
    • 한국지반공학회논문집
    • /
    • 제28권9호
    • /
    • pp.69-83
    • /
    • 2012
  • 국내에서 출토빈도가 높은 9개 암종을 대상으로 침투에 의한 함수시 강도저감에 대한 연구를 시행하였다. 함수에 의한 강도저감은 암종에 관계없이 암석강도에 지배된다는 사실을 확인하였다. 강도가 약한 암일수록 강도저감 민감도가 예민함을 알 수 있다. 강도에 따라 0.5%의 함수비에 50% 내외의 강도 저감현상이 발생하는 일은 매우 흔하게 관찰된다. 대부분의 암석은 포화함수비의 1/4~1/2의 포화에서 파괴가 일어난다는 사실도 확인할 수 있었다. 함수시 암석강도의 약화는 교질물질의 접착강도 약화와 용탈에 의한 것으로 사료된다.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.

약계자 제어에 의한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive with Field Weakening Control)

  • 정동화;김종관;박기태;차영두
    • 조명전기설비학회논문지
    • /
    • 제19권8호
    • /
    • pp.85-93
    • /
    • 2005
  • 본 논문에서는 고속 드라이브를 위하여 IPMSM의 약계자 영역에서 최대 토크제어를 제시한다. 최대 토크동작을 위하여 최적 d축 전류를 결정하고 이 전류를 각 제어모드에서 사용한다. 최대 토크를 발생하기 위하여 전류 조절기의 출력인 인버터의 출력전압은 DC 링크전압을 최대로 이용한다. 제어모드의 원활한 전이는 지령신호에 기초하여 자동적으로 수행한다. 본 논문에서 제시한 최대 토크제어로 IPMSM 드라이브에 적용시험을 한다. 그리고 시험결과의 응답특성을 다양하게 분석하여 본 논문의 타당성을 입증한다.

전류궤환에 의한 영구자석 동기 전동기의 약계자 제어 (Field Weakening Control of IPMSM Using Current Feedback)

  • 윤병도;김윤호;김종구;최원범;이병송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.347-349
    • /
    • 1995
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. This paper proposes a new field-weakening control algorithm using phase current feedback to improve the torque characteristics and to reduce the torque ripple of IPMSM in the constant power region. The improved torque characteristics of speed control strategy with current feedback control algorithm is analyzed and the performance is investigated by the computer simulation results.

  • PDF

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

An Extended $H\ddot{u}ckel$ Calculation on the Interaction of 1,3,5-Trithian with Ag(111) Surface

  • Park, Sang-Hyun;Kim, Ho-Jing
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권2호
    • /
    • pp.244-250
    • /
    • 1993
  • The interaction of 1,3,5-trithian molecule with Ag(111) surface is studied employing Extended Huckel method. The Ag(111) surface is modeled by the three layer metal clusters composed of 43 Ag atoms. We assume that the 1,3,5-trithian is lying flat on Ag(111) surface in the chair conformation. The geometry of 1,3,5-trithian itself is assumed to be the same as in the gas phase, which is obtained through the AM1 SCF-MO calculation with full geometry optimization. The calculation for 3-fold site adsorption leads to the weakening of C-S bond, which is compatible with the observed 5 cm$^{-1}$ decrease of the C-S stretching frequency upon surface adsorption, while the on-top site adsorption leads to strengthening of C-S bond. The major component of the C-S bond of trithian is S $3p_{pi}\;(S\;3p_x+S\;3p_y)$ and therefore only the 3-fold site adsorption causes the weakening of this bond. In addition, it is found that the trithian molecule binds to the 3-fold site more strongly.