• Title/Summary/Keyword: weak signal

Search Result 395, Processing Time 0.042 seconds

Development of Analysis Model for R&D Environment Change in Search of the Weak Signal (Weak Signal 탐색을 위한 연구개발 환경변화 분석모델 개발)

  • Hong, Sung-Wha;Kim, You-Eil;Bae, Kuk-Jin;Park, Young-Wook;Park, Jong-Kyu
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.1
    • /
    • pp.189-211
    • /
    • 2009
  • The importance of searching the weak signal has been increasingly recognized to cope with rapidly changing circumstances as an environmental analysis technique. This study proposed the NEST process for the searching for the weak signal. The NEST (New & Emerging Signals of Trends) is a micro environmental analysis process based on both quantitative and qualitative method. For this, the weak signal Searching Board is developed and traditional methods as global monitoring, trend analysis, brainstorming and delphi method are implemented to NEST. The NEST process is consists of three stage modules; the global monitoring stage in search of seeds information related to the environmental change, the weak signal analysis stage using the weak signal Tracking Board, and the delphi valuation stage for objectifying the final result. The NEST provides the weak signal of the promising technology which can bring new paradigm and the Up-Coming Trends which can lead new trend in the future. These outputs can be used to select promising technology from firm level to national level. The NEST system can be effectively operated as well as in small group so that small and medium innovative firms can develop and execute their own NEST process individually.

  • PDF

Design of Efficient Frequency Discriminator for Weak Signal Tracking (미약신호 추적을 위한 효율적인 주파수 변별기 설계)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.649-654
    • /
    • 2009
  • In this paper, an frequency tracking algorithm for weak signal tracking is proposed. The proposed frequency tracking algorithm uses a FMS (Fast Minus Slow) discriminator for frequency error estimation. This frequency tracking algorithm shows good frequency estimation performance under weak signal condition and is a computationally efficient for embedded software GNSS receiver. The software GNSS receiver implementing the proposed weak signal tracking algorithms could track GPS signal down to - 159dBm signal strength in the signal generator test and real GPS signal under dense urban condition.

Weak Random Signal Detection:In Signal-Dependent Noise (약한 확률적 신호 검파 : 신호의 존성 잡음이 있는 경우)

  • 송익호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.4
    • /
    • pp.332-339
    • /
    • 1988
  • Using a generalized observation model, in which one can express the effects of non-additive noise such as signal-dependent noise and multiplicative noise in addition to purely-additive noise, the problem of weak random-signal detection is investigated. It is shown that the test statistics of locally optimum detectors for detection of weak random signals in signal-dependent noise model are interesting extensions of those in purely-additive noise model. This result is a complement to the result for weak random-signal detction in multiplicative noise model.

  • PDF

Detecting Weak Signals of Emerging Technologies (미래 유망기술의 Weak Signal 탐지 방안)

  • Choi, S.G.;Kim, K.Y.;Oh, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.2
    • /
    • pp.18-27
    • /
    • 2016
  • 국가 경제의 지속적인 발전이 가능하게 하려면 미래 유망기술의 발굴이 중요함은 널리 알려져 있다. 하지만, 과학기술의 융 복합화와 불확실성의 증가 그리고 기존 기술의 틀을 깨는 혁신적 기술의 등장 등으로 인해서 실효성 높은 미래 유망기술의 발굴이 어려워지고 있다. 미래 유망기술 선점을 위해서는 fast follower 전략에서 first mover 형으로 전환이 필요하며, 이를 위해서는 기술태동 초기의 weak signal을 파악해야 한다. 지금까지 weak signal 탐지는 주로 전문가 기반으로 이루어져 왔으나 분석 시간이 오래 걸릴 뿐만 아니라 대상 분야가 넓어지고 분석할 데이터의 양이 급격히 증가하면서 정량적 데이터 분석을 보완적으로 사용하는 방향으로 패러다임의 변화가 일어나고 있다. 하지만, 텍스트 분석을 통한 weak signal 탐지기술은 아직 기초적인 수준에 머물러 있어서 관련 연구에 대한 투자가 필요하다.

  • PDF

A Study on the Location Error Measurement to Resolve the Problem of Weak Signal Areas for Satellite Navigation System (위성항법시스템기반의 도심지역 음영해소를 위한 위치오차 측정에 관한 연구)

  • Park, Chi-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.13-19
    • /
    • 2011
  • This study is to explore the causes for weak signal areas and suggest solutions for the problem of weak signal areas through the experiments for location error of satellite navigation system depending on the characteristics of locations. For kinematic point positioning, a moving object can have different number of satellite navigation systems available depending on its location. It has to receive location data from at least four satellite navigation systems for precise point positioning. However, drastic urbanization and poor surroundings have caused greater location error and weak signal areas. To reduce location error and remove the occurrence of weak signal areas, it is necessary to verify the characteristics of metropolitan surroundings. Therefore, experiments were conducted to measure location error and discover the causes for the occurrence of weak signal areas in metropolitan area, residential area, woods, ocean area, and open ground. In addition, this study suggests a point positioning algorithm with high precision suitable for local surroundings and an algorithm to remove weak signal areas.

Performance Analysis of Assisted-Galileo Signal Acquisition Under Weak Signal Environment (약 신호 환경에서의 Assisted-Galileo 신호 획득 성능 분석)

  • Lim, Jeong-Min;Park, Ji-Won;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.646-652
    • /
    • 2013
  • EU's Galileo project is a market-based GNSS (Global Navigation Satellite System) that is under development. It is expected that Galileo will provide the positioning services based on new technologies in 2020s. Because Galileo E1 signal for OS (Open Service) shares the same center frequency with GPS L1 C/A signal, CBOC (Composite Binary Offset Carrier) modulation scheme is used in the E1 signal to guarantee interoperability between two systems. With E1 signal consisting of a data channel and a pilot channel at the same frequency band, there exist several options in designing signal acquisition for Assisted-Galileo receivers. Furthermore, compared to SNR worksheet of Assisted-GPS, some factors should be examined in Assisted-Galileo due to different correlation profile and code length of E1 signal. This paper presents SNR worksheets of Galileo E1 signals in E1-B and E1-C channel. Three implementation losses that are quite different from GPS are mainly analyzed in establishing SNR worksheets. In the worksheet, hybrid long integration of 1.5s is considered to acquire weak signal less than -150dBm. Simulation results show that the final SNR of E1-B signal with -150dBm is 19.4dB and that of E1-C signal is 25.2dB. Comparison of relative computation shows that E1-B channel is more profitable to acquire the strongest signal in weak signal environment. With information from the first satellite signal acquisition, fast acquisition of the weak signal around -155dBm can be performed with E1-C signal in the subsequent satellites.

Carrier Phase Based Navigation Algorithm Design Using Carrier Phase Statistics in the Weak Signal Environment

  • Park, Sul Gee;Cho, Deuk Jae;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • Due to inaccurate safe navigation estimates, maritime accidents have been occurring consistently. In order to solve this, the precise positioning technology using carrier phase information is used, but due to high buildings near inland waterways or inclination, satellite signals might become weak or blocked for some time. Under this weak signal environment for some time, the GPS raw measurements become less accurate so that it is difficult to search and maintain the integer ambiguity of carrier phase. In this paper, a method to generate code and carrier phase measurements under this environment and maintain resilient navigation is proposed. In the weak signal environment, the position of the receiver is estimated using an inertial sensor, and with this information, the distance between the satellite and the receiver is calculated to generate code measurements using IGS product and model. And, the carrier phase measurements are generated based on the statistics for generating fractional phase. In order to verify the performance of the proposed method, the proposed method was compared for a fixed blocked time. It was confirmed that in case of a weak or blocked satellite signals for 1 to 5 minutes, the proposed method showed more improved results than the inertial navigation only, maintaining stable positioning accuracy within 1 m.

Parameter estimation of weak space-based ADS-B signals using genetic algorithm

  • Tao, Feng;Jun, Liang
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.324-331
    • /
    • 2021
  • Space-based automatic dependent surveillance-broadcast (ADS-B) is an important emerging augmentation of existing ground-based ADS-B systems. In this paper, the problem of space-based ultra-long-range reception processing of ADS-B signals is described. We first introduce a header detection method for accurately determining the pulse position of a weak ADS-B signal. We designed a signal encoding method, shaping method, and fitness function. We then employed a genetic algorithm to perform high-precision frequency and phase estimations of the detected weak signal. The advantage of this algorithm is that it can simultaneously estimate the frequency and phase, meaning a direct coherent demodulation can be implemented. To address the computational complexity of the genetic algorithm, we improved the ratio algorithm for frequency estimation and raised the accuracy beyond that of the original ratio algorithm with only a slight increase in the computational complexity using relatively few sampling points.

Testing Weak-Lensing Maps of Galaxy Clusters with Dense Redshift Surveys Testing Weak-Lensing Maps of Galaxy Clusters with Dense Redshift Surveys

  • Hwang, Ho Seong;Geller, Margaret J.;Diaferio, Antonaldo;Rines, Kenneth J.;Zahid, H. Jabran
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.54-54
    • /
    • 2014
  • We use dense redshift surveys of nine galaxy clusters at z ~ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5zcl < z < 2 zcl is 10 - 23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses (>20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.

  • PDF

An Efficient Assisted-GPS Acquisition Method in Weak Signal Environment (약 신호 환경에서 효율적인 A-GPS 초기동기 방법)

  • 박상현;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.96-102
    • /
    • 2004
  • For sensitivity enhancement, the general assisted-GPS acquisition method adopts not only the coherent accumulation technique but also the non-coherent accumulation technique since the long coherent accumulation period increases the number of frequency search cells. But the non-coherent accumulation technique causes tile squaring loss, which is a dominant factor among the acquisition losses of assisted GPS dealing with weak GPS signals. This paper derives the squaring loss of the previous assisted-GPS acquisition method and proposes an assisted-GPS acquisition method for solving the problem of squaring loss in weak signal environment. In this paper, it is explained that the proposed assisted-GPS acquisition method prevents the squaring loss using a coupled coherent accumulation technique and the number of search cells of the proposed assisted-GPS acquisition method is much smaller than that of the previous assisted-GPS acquisition method. Finally, through the simulation by the GPS simulator, the acquisition success rate of the proposed assisted-GPS acquisition method is compared with that of the previous assisted-GPS acquisition method and the acquisition improvements are shown in weak signal environment.