• Title/Summary/Keyword: weak rocks

Search Result 85, Processing Time 0.03 seconds

Characteristics of Stone-monuments and Geological Studies on the Rocks for Conservation(III) - Hanam city, Yangpyeong-gun and Yeoju-gun, Gyeonggi-do - (석조문화재의 특징과 암석에 대한 지질학적 연구 (III) -경기도 하남시, 양평군 및 여주군을 중심으로-)

  • Lee, Sang Hun;Park, Kyung Rip
    • Journal of Conservation Science
    • /
    • v.4 no.1 s.4
    • /
    • pp.11-42
    • /
    • 1995
  • Stone-monuments, distributed in this area, have been investigated and studied on the characteristics and the rock phases in the geological and conservational points of view. Most of them may have been built from the end of the Shilla Kingdom to the Koryeo Kingdom, which are based on the typical characteristics of the form. The used rocks in these monuments are mainly biotite granite of the Jurassic age which is widely distributed around the area. Black slate and marbles are also used in some monuments, which may be obtained from other areas. The biotite granite of massive and coarse texture contains often inclusions of biotite aggregates or fragments of dioritic rock phase. However, the biotite granite in the area may be very weak to the chemical weathering so that irregular rock surface shows generally $2\~3mm$ relief. The irregular relief is mainly due to different relative degree on the chemical weathering according to the kind of minerals especially quartz, feldspar and biotite. The chemical weathering is also influenced by organisms. For conservation, they must be scientifically considered based on the characteristics, kind of the rock phase, factors on the weathering process, situation in situ or being transported, and protection.

  • PDF

An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study

  • Eftekhari, Abbas;Aalianvari, Ali
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-224
    • /
    • 2019
  • Excavation of long tunnels by shielded TBMs is a safe, fast, and efficient method of tunneling that mitigates many risks related to ground conditions. However, long-distance tunneling in great depth through adverse geological conditions brings about limitations in the application of TBMs. Among various harsh geological conditions, squeezing ground as a consequence of tunnel wall and face convergence could lead to cluttered blocking, shield jamming and in some cases failure in the support system. These issues or a combination of them could seriously hinder the performance of TBMs. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. The Golab water conveyance tunnel was excavated by a double-shield TBM. This tunnel passes mainly through metamorphic weak rocks with up to 650 m overburden. These metamorphic rocks (Shales, Slates, Phyllites and Schists) together with some fault zones are incapable of sustaining high tangential stresses. Prediction of the convergence, estimation of the creeping effects and presenting strategies to overcome the squeezing ground are regarded as challenging tasks for the tunneling engineer. In this paper, the squeezing potential of the rock mass is investigated in specific regions by dint of numerical and analytical methods. Subsequently, several operational solutions which were conducted to counteract the challenges are explained in detail.

Genesis of the Lead-Zinc-Silver and Iron Deposits of the Janggun Mine, as Related to Their Structural Features Structural Control and Wall Rock Alteration of Ore-Formation (장군광산(將軍鑛山)의 연(鉛)·아연(亞鉛)·은(銀) 및 철(鐵) 광상(鑛床)의 성인(成因)과 지질구조(地質構造)와의 관계(關係) - 광상(鑛床) 생성(生成)의 지질구조(地質構造) 규제(規制)와 모암(母岩)의 변질(變質) -)

  • Lee, Hyun Koo;Ko, Suck Jin;Naoya, Imai
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.161-181
    • /
    • 1990
  • The lead-zinc-silver-iron deposits from the Janggun mine are of hydrothermal-metasomatic origin, characterized by the marked hydrothermal alteration of the wallrocks, such as hydrothermal manganese enrichment of carbonate rocks, silicification, chloritization, sericitization, montmorillonitization and argillic alteration. The ore deposits have been emplaced within the Janggun Limestone of Cambro-Ordovician age at the immediate contacts with apophyses injected from the Chunyang Granite plutons of Late Jurrasic age. They have been structurally controlled by fractures in the carbonate rocks and the irregular intrusive contacts of granitic rocks, and are closely associated with hypogene manganese carbonate deposits. In the mine nine seperate orebodies are being mined. On the basis of the petrological study, hydrothermal alteration zone of this mine may be divided into the following four zones from wallrock to orebody. (I) Primary calcite and dolomite zone${\rightarrow}$(II) dolomitic limestone zone${\rightarrow}$(III) dolomitic zone${\rightarrow}$(IV) rhodochrosite zone${\rightarrow}$ orebody. There was not recongnized Mn and Fe elements in the primary calcite and dolomite zone. But, in the dolomitic limestone and dolomite zone, calcite and dolomite were subjected to weak hydrothermal manganese enrichment and the grade of the manganese enrichment increase oreward. By means of electron probe microanalysis, it was found that manganoan dolomite occured between primary dolomite grains, cross the cleavage of the primary dolomite and around the dolomite grains. Above these result supports that the Janggun manganese carbonate deposits are of hydrothermal metasomatic origin.

  • PDF

Application of Geophysical Exploration Technique to the Identification of Active Weak Zones in Large Scale Mountainous Region (대규모 산지지반 활동연약대 규명을 위한 지구물리탐사기법의 활용 연구)

  • Shin, Hyung Ohk;Kim, Man-Il;Yoon, Wang Joong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2018
  • The purpose of this study is to understand the ground change of large scale mountainous region and to estimate the active weak zone using geophysical exploration (electrical resistivity and refraction seismic explorations) in large scale deep landslide area located in Wanjugun, Jeollabukdo. We also analyzed the characteristics of deep landslides occurred in metamorphic rocks region and confirmed the approximate scale. As a result of comparative analysis of N-value by standard penetration test (SPT), low resistivity anomaly, and tension crack identified from field investigation, a discontinuity in soil layer was estimated at 10 ~ 15 m below the surface. Based on this results, the distribution pattern of active weak zone was confirmed between the discontinuity in soil layer and estimation line of bedrock.

Analysis of Slope Stability and Property of Discontinuities Using Square-Inventory Method: The Changri area, Boeun-Gun, Chungbuk (정면적법을 이용한 불연속면의 특성화 및 사면안정해석: 충북 보은군 내북면 창리 지역)

  • Choi, Byoung-Ryol;Cheong, Sang-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2008
  • The study shows a method called a square-inventory method, which is a better and faster method than scanline survey and window method for an analysis of slope stability. The study area is located in the Changri area, Boeun-Gun, Chungbuk, and consists of many formations of the Okcheon Supergroup. Various types of failure are observed from the phyllite including the rocks in the study area. The physical properties of meta-sedimentary rocks are that minerals of the rocks are composed of microcrystalline quartz and sericite, which are arranged parallel to bedding (or schistosity) and crenulation cleavage. Therefore, such properties affect geotechnical ones of the rock. The slope stability are analyzed by selecting 3 areas, each of which are divided into 2 or 3 slopes of $1m{\times}1m$ area that represent each of 3 investigation sites. The possibility of wedge and toppling failure is very high in all 3 areas by using square-inventory method. Although possibility of plane failure is weak in the investigation site 2, the plane failures are frequently found from the slope of site 2. The bedding (or schistosity) plane and cleavage, another types of discontinuity coexist in meta-sedimentary rocks uulike igneous rocks, and therefore are important factors to be considered together with joint structures in th ε analysis of slope stability.

Petrological Study of the Dioritic and Granitic Rocks from Geochang Area (거창 일대에 분포하는 섬록암류와 화강암류에 대한 암석학적 연구)

  • Han, Mi;Kim, Sun-Woong;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.167-180
    • /
    • 2010
  • The geochemical studies on the plutonic rocks of the Geochang, the central part of the Ryongnam massif, were carried out in order to constrain the petrogenesis and the paleotectonic environment. The objects of this study are dioritic rocks, biotite granite and hornblende granite. The modal compositions indicate that the dioritic rocks are quartz diorite, quartz monzodiorite, tonalite, biotite granites are granodiorite, granite and hornblende granites are granite, quartz monzonite, quartz syenite. These rocks belong to the calc-alkaline series. Especially, trace elements such as Sr, Nb, Sr, Ti are depleted, suggesting that these rocks are produced in the subduction zone related to calc-alkaline series. Also, the studied granitic rocks correspond to peraluminous and I-type. Chondrite-normalized REE patterns show that LREE are enriched much more than HREE, and have weak Eu(-) anomaly. It is similar to pattern of Jurassic granitoids in the South Korea. Total REE value of the biotite granite and hornblende granite ranges 76.21~137.05 ppm and 73.84~483.21 ppm, respectively, also $(La/Lu)_{CN}$ value ranges 9.61~36.47 and 7.17~21.85. It is suggest that studied rocks suppor their emplacement at active continental margin. Also, these rocks are derived from magma generated by partial melting of lower continental crust materials.

Radionuclide Sorption in the Geosphere: Role of Single Minerals (지하매질에서의 방사성핵종흡착: 단일광물의 역할)

  • Cho, Young-Hwan;Hyun, Sung-Pil;Hahn, Pilsoo
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.40-40
    • /
    • 2001
  • The sorption behavior of Cs(I), Sr(II), and U(VI) on representative single minerals(oxide and clay) and rocks were comparatively studied by using batch type sorption experiment. The effects of pH, ionic strength and the sorption mechanism were also discussed. It was found that mineral structure played as a main factor governing the sorption characteristics of Cs(I), Sr(II). The sorption of Cs(I) and Sr(II) on minerals showed ionic strength-dependency, which is a indirect sign of weak binding between metal cation and mineral surfaces. However, the sorption behavior of U(VI) was quite different compared with that of Cs(I), and Sr(II). Fe-oxide minerals showed strong tendency for U(VI) sorption, dominating the sorption in the composite/mixture systems. The surface characteristics which arise from mineral structure, and the affinity of metal ions to the sorption sites of minerals are the key to understand the role of minerals in the radionuclide sorption.

  • PDF

Study on Design and Construction of CFRD under Unfavorable Conditions (불리한 조건에서의 콘크리트 표면차수벽형 석괴댐 설계 및 시공)

  • Park Dong-Soon;Kim Hyoung-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.97-107
    • /
    • 2006
  • Or this study, prevailing design and construction methods of dam under various unfavorable conditions are summarized. for example, foundation treatment with large scale alluvium site or weathered rock mass, dam constructing techniques with unfavorable topographic conditions are studied for the better understanding of relating engineers. Also, zoning by using weak rocks and sand-gravel fill techniques are summed up.

암반공학적 측면에서본 신생대 암반비탈면의 공학적 문제 및 대책

  • Shin, Hee-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.285-289
    • /
    • 2005
  • The Cenozoic Era consists of two period , the Tertiary and the Quaternary Period. Weak rock types may include areas containing: 1) poorly cemented or uncemented sediments, 2) highly weathered rock, or 3) fault lines. Especially this paper deal with poorly cemented or uncemented sedimentary rocks in slope. Mechanical weathering is caused by physical processes such as absorption and release of water, and changes in temperature and stress at or near the exposed rock surface. It results in the opening of discontinuities, the formation of new discontinuities by rock fracture, the opening of grain boundaries, and the fracture or cleavage of individual mineral grains. Decomposition causes some silicate minerals such as feldspars to change to clay minerals. There was a strong negative correlation between water absorption and important engineering properties such as strength and durability.

  • PDF

Engineering Geological Characteristics of the Cenozoic Strata (신생대 지층의 지질공학적 특성)

  • Yoon, Woon-Sang;Jeong, Ui-Jin;Park, Jeong-Hoon;Kim, Choon-Sik;Ann, Kyeong-Chol;Kim, Taek-Kon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.231-238
    • /
    • 2005
  • Incompetent sediments and competent volcanics are consisted of the Cenozoic geology in Korea. Although the Cenozoic area is small, it is necessary to special interesting for ground of these geological material. The Cenozoic geology shows heterogeneous characteristics. We can look at the weak Cenozoic sedimentary rocks under the hard Cenozoic basalt in the area. Some Cenozoic un(or half)-consolidated soft sediments have large, heavy and hard boulders. Some volcanics and tuffaceous sediments have swelling clays. These characteristics give very difficult problems to engineering geologists and civil engineers.

  • PDF