• Title/Summary/Keyword: weak interlayer

Search Result 15, Processing Time 0.025 seconds

Effect of weak interlayer coupling on critical fluctuation in high $T_c$ superconductors

  • Kim, Jin-Tae;Kang, W.N.;Chung, S.H.;Ha, D.H.;Yoo, K.H.;Kim, M.S.;Lee, Sung-Ik;Park, Y.K.;Park, J.C.
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • The magnetization and/or resistivity of high $T_c$ superconductors ($YBa_2Cu_3O_{7-\delta}$(YBCO) single crystal, $Bi_2Sr_2CaCu_2O_8$ (Bi-2212) single crystal, $Tl_2Ba_2CaCu_2O_8$ (Tl-2212) film, $HgBa_2Ca_2Cu_3O_8$ (Hg-1223) film) have been measured as a function of magnetic field H and temperature T. The extracted fluctuation part of the magnetization and conductivity exhibits a critical behavior consistent with the three-dimensional XY model. The dynamic critical exponent z does not sensitively vary with a type of the superconductors. The value of z ranges from 1.5 to $1.8{\pm}0.1$. However, the static critical exponent ${\nu}$ is the most largely increased in Tl-2212 that has a weaker interlayer coupling strength than YBCO; the value of ${\nu}$ is 0.669, 0.909, 1.19, and 1.338 for YBCO, Bi-2212, Hg-1223, and Tl-2212 respectively. The results indicate that the weak interlayer coupling along the c-axis of high $T_c$ superconductors near $T_c$ does not influence the dynamic critical exponent z (the same value of superfluid $^4He$), but significantly increases the static critical exponent ${\nu}$.

  • PDF

Effect of Ag interlayer on the optical and electrical properties of ZnO thin films (Ag 중간층 두께에 따른 ZnO 박막의 광학적, 전기적 특성 연구)

  • Kim, Hyun-Jin;Jang, Jin-Kyu;Choi, Jae-Wook;Lee, Yeon-Hak;Heo, Sung-Bo;Kong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.91-95
    • /
    • 2022
  • ZnO single layer (60 nm thick) and ZnO with Ag interlayer (ZnO/Ag/ZnO; ZAZ) films were deposited on the glass substrates by using radio frequency (RF) and direct current (DC) magnetron sputter to evaluate the effectiveness of Ag interlayer on the optical visible transmittance and the conductivity of the films. In the ZAZ films, the thickness of ZnO layers was kept at 30 nm, while the Ag thickness was varied as 5, 10, 15 and 20 nm. In X-ray diffraction (XRD) analysis, ZnO films show the (002) diffraction peak and ZAZ films also show the weak ZnO (002) peak and Ag (111) diffraction peak. As a thickness of Ag interlayer increased to 20 nm, the grain size of the Ag films enlarged to 11.42 nm and the optical band gap also increased from 4.15 to 4.22 eV with carrier concentration increasing from 4.9 to 10.5×1021 cm-3. In figure of merit measurements, the ZAZ films with a 10 nm thick Ag interlayer showed the higher figure of merit of 4.0×10-3 Ω-1 than the ZnO single layer and another ZAZ films. From the experimental result, it is assumed that the Ag interlayer enhanced effectively the opto-electrical performance of the ZAZ films.

Observation of the Domain Structures in Soft Magnetic (Fe97A13)85N15/Al2O3 Multilayers

  • Stobiecki, T.;Zoladz, M.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • The longitudinal magnetooptical Kerr effect was used to analyse magnetic domains in soft magnetic ${(Fe_{97}A1_3)}_{85}N_{15}$/$Al_{2}O_{3}$ multilayers in order to get microscopic understanding of interlayer exchange coupling. The measuring system consists of a Kerr microscope, a CCIR camera (with an 8-bit framegrabber), 16 bit digital camera and computer system for real-time image processing and to control external magnetic field and cameras. The strength of ferromagnetic (EM) coupling as a function of the spacer thickness of $Al_2O_3$ was investigated. It was found that strong FM-coupling, strong uniaxial anisotropy and coherent rotation of the magnetization have been observed for the spacer thickness in the range of 0.2 nm $\leq$ t $\leq$ 1 m, however, weak FM-coupling, patch domains and $360^{\circ}$-walls occur for the spacer thickness of t = 2.5 nm. At a spacer thickness of t $\geq$ 5 nm transition takes place from weak FM-coupling to the decoupled state where complex interlayer interactions and different types of the domain walls were observed.

Mechanical properties of tailings with dipping interlayers under high confining pressure

  • Qinglin, Chen;Zugui, Li;Zeyu, Dai;Xiaojun, Wang;Chao, Zhang
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.557-571
    • /
    • 2022
  • Landslides are often triggered by weak interlayers initiated in tailings dam foundations, and hazards gradually occur. This is serious for landslides in high tailings dams due to their high potential energy. Tailing samples with a fine-grained interlayer at a set dip angle were prepared. Consolidated undrained (CU) triaxial shear tests were carried out by using a high-pressure triaxial apparatus. The results were compared with the results under a low confining pressure. Four reasons were summarized for high tailings dams more prone to instability than low dams. The shear strength of the samples with dipping interlayers decreases with increasing dip angle. An obvious straight drop in the stress path after the peak occurs in samples with dipping interlayers at an angle of 60°. The effect of the interlayer on the mechanical behaviour of tailings is very sensitive, especially for the sample with a dipping interlayer at an angle of 60°. Shear slipping along the interlayer should be given more attention in tailings dams. Compared with the results under low confining pressure, the stress decreases continuously for the samples with dipping interlayers at large angles under high confining pressure. The positive pore pressure, which reduces the effective stress, occurred in tailings samples under high confining pressure. The residual strength of tailings under high confining pressure is smaller than that under low confining pressure. These factors increase the dam break risk and the disaster impact for high tailings dams.

The In-situ Dressing of CMP Pad Conditioners with Novel Coating Protection

  • Sung, James-C.;Kan, Ming-Chi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1142-1143
    • /
    • 2006
  • Kinik Company pioneered diamond pad conditioners protected by DLC barrier ($DiaShield^{(R)}$ Coating) back in 1999 (Sung & Lin, US Patent 6,368,198). Kink also evaluated Cermet Composite Coating (CCC or $C^3$, patent pending) with a composition that grades from a metallic (e.g. stainless steel) interlayer to a ceramic (e.g. $Al_2O_3$ or SiC) exterior. The metallic interlayer can form metallurgical bond with metallic matrix on the diamond pad conditioner. The ceramic exterior is both wear and corrosion resistant. The gradational design of $C^3$ coating will assure its strong adherence to the substrate because there is no weak boundary between coating and substrate.

  • PDF

Electrochemical Properties of Carbonized Phenol Resin (탄화된 페놀레진의 전기화학적 성질)

  • 김한주;박종은;홍지숙;류부형;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.629-632
    • /
    • 1999
  • For replacing Li metal ai Lithium ton Bakery(LIB) system. we used carbon powder material which prepared by pyrolysis of phenol resin as starting material. It became amorphous carbon by pyrolysis through it\`s self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. however it has a problem with structural destroy causing weak carbon-carbon bond. So. we used ZnCl$_2$ as the pore-forming agent. This inorganic salt used together with the resin serves not only as the pore-forming agent to form open pores, which grow Into a three-dimensional network structure in the cured material, foul also as the microstructure-controlling agent to form a loose structure dope with bulky dopants. We analyzed SEM in order to find to different of structure. and can calculate distance of interlayer. CV test showed oxidation and reduction

  • PDF

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Spin-polarized energy-gap opening in asymmetric bilayer graphene nanoribbons

  • Kim, Gyu-Bong;Ji, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.442-442
    • /
    • 2011
  • Electronic and magnetic properties of bilayer zigzag graphene nanoribbon (bZGNR) are studied using pseudopotential density functional method. The edge atoms in the top and bottom layers of bZGNR make a weak hybridization, which leads to electronic structures different from monolayer ZGNR. For asymmetric bZGNR, where the top and bottom layers have different widths, one edge is pinched by the interlayer bonding and the other sustains antiferromagnetic ordering. A small amount of charge transfer occurs from narrower to wider layer, producing spin-polarized electron and hole pockets. External electric field produces asymmetric energy-gap opening for each spin component, inducing half-metallicity in bZGNR.

  • PDF

Chemical and Electrochemical Intercalation of Lithium in 2D-FeMoO$_4Cl^1$

  • Choy Jin-Ho;Chang Soon-Ho;Noh Dong-Youn;Son Kyoung-A
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.27-30
    • /
    • 1989
  • Lithium has been intercalated into $FeMoO_4Cl$, and deintercalated from $LixFeMoO_4Cl$ both electrochemically and chemically. The inserted $Li^+$ ions are stabilized in the distorted octahedral field in interlayer space of $FeMoO_4Cl$. The crystal symmetry is reduced from tetragonal to monoclinic due to the reduction of ferric to ferrous ions in $LixFeMoO_4Cl$ upon lithium intercalation. From the magnetic and structural data, it has been concluded that the high-spin electronic configuration of $Fe^{2+}(d_{xz}^2{d_{y2}^1}{d_1}{2d_z^12}{\cdot}_y2)$, corresponding to $^5E_g$, group term in $D_{4h}$ symmetry, can be stabilized by the elongation of $FeO_4Cl_{2-}$octahedra in a weak ligand field.

Effect of $ZnCl_2$ on Formation of Carbonized Phenol Resin Anode

  • Kim Han-Joo;Hong Ji-sook;Son Won-Ken;Park Soo-Gil;Oyama Noboru
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2000
  • For replacing Li metal at Lithium ion Battery(LIB) system, we used carbon powder material which prepared by Pyrolysis of Phenol resin as starting material. It became amorphous carbon by Pyrolysis through it's self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. However, it has a problem with structural destroy due to weak carbon-carbon bond. So, we used $ZnCl_2$ as the pore-forming agent. This inorganic salt was used together with the resin serves not only as the pore-forming agent to form open pores, which grow into a three-dimensional network structure in the cured material, but also as the microstructure-controlling agent to form a loose structure doped with bulky dopants. We used SEM in order to find to difference of structure, and can calculate the distance of interlayer by XRD analysis. CV test showed oxidation and reduction.