• Title/Summary/Keyword: waypoint following

Search Result 12, Processing Time 0.03 seconds

Waypoint guidance using optimal control (최적제어를 이용한 경로점 유도)

  • 황익호;황태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1867-1870
    • /
    • 1997
  • Waypoint guidance is a technique used to steer an autonomous vehicle along a desired trajectory. In this paper, a waypoint guidance algorithm for horizontal plane is derived by combining a line following guidance law and a turning guidance law. The line following guidance is derived based on LQR while the turning guidance is designed using rendzvous problem. Through simulation, the proposed method shows a good performance.

  • PDF

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF

Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode (틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드)

  • Ha, Cheol-Keun;Yun, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

DESIGN OF AN UNMANNED GROUND VEHICLE, TAILGATOR THEORY AND PRACTICE

  • KIM S. G.;GALLUZZO T.;MACARTHUR D.;SOLANKI S.;ZAWODNY E.;KENT D.;KIM J. H.;CRANE C. D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • The purpose of this paper is to describe the design and implementation of an unmanned ground vehicle, called the TailGator at CIMAR (Center for Intelligent Machines and Robotics) of the University of Florida. The TailGator is a gas powered, four-wheeled vehicle that was designed for the AUVSI Intelligent Ground Vehicle Competition and has been tested in the contest for 2 years. The vehicle control model and design of the sensory systems are described. The competition is comprised of two events called the Autonomous Challenge and the Navigation Challenge: For the autonomous challenge, line following, obstacle avoidance, and detection are required. Line following is accomplished with a camera system. Obstacle avoidance and detection are accomplished with a laser scanner. For the navigation challenge, waypoint following and obstacle detection are required. The waypoint navigation is implemented with a global positioning system. The TailGator has provided an educational test bed for not only the contest requirements but also other studies in developing artificial intelligence algorithms such as adaptive control, creative control, automatic calibration, and internet-base control. The significance of this effort is in helping engineering and technology students understand the transition from theory to practice.

Development of AUV's Waypoint Guidance Law and Verification by HILS (무인잠수정의 경로점 유도 법칙 설계 및 HILS 검증)

  • Hwang, Jong-Hyon;Yoo, Tae-Suk;Han, Yongsu;Kim, Hyun Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1417-1423
    • /
    • 2020
  • This paper proposes a waypoint guidance algorithm for the Autonomous Underwater Vehicle(AUV). The proposed simplified guidance algorithm is presented, which is combined LOS guidance and cross-track guidance for path following. Cross-track error is calculated using the position of the AUV and reference path. LOS guidance and cross-track guidance are appropriately changed according to cross-track error. And the stability of the system has been improved using variable cross-track control gain by cross-track error. Also, in this paper, navigation hardware in-the loop simulation(HILS) is implemented to verify navigation algorithm of AUV that performs combined navigation using inertial navigation device and doppler velocity log(DVL). Finally, we design integrated system HILS (including navigation HILS) for performance verification of guidance algorithm of the autonomous underwater vehicle. By comparing the sea test result with HILS result, the proposed guidance algorithm and HILS configuration were confirmed be correct.

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

A Study on Precision Positioning Methods for Autonomous Mobile Robots Using VRS Network-RTK GNSS Module (VRS 네트워크-RTK GNSS 모듈을 이용한 자율 이동 로봇의 정밀 측위방법에 관한 연구)

  • Dong Eon Kim;YUN-JAE CHOUNG;Dong Seog Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.3
    • /
    • pp.1-13
    • /
    • 2024
  • This paper proposes a cost-effective system design and user-friendly approach for the key technological elements necessary to configure an autonomous mobile robot. To implement a high-precision positioning system using an autonomous mobile robot, we established a Linux-based VRS (virtual reference station)-RTK (real-time kinematic) GNSS (global navigation satellite system) system with NTRIP (Network Transport of RTCM via Internet Protocol) client functionality. Notably, we reduced the construction cost of the GNSS positioning system by performing dynamic location analysis of the established system, without utilizing an RTK replay system. Dynamic location analysis involves sampling each point during the trajectory following of the autonomous mobile robot and comparing the location precision with ground-truth points. The proposed system ensures high positioning performance with fast sampling times and suggests a GPS waypoint system for user convenience. The centimeter-level precision GNSS information is provided at a 30Hz sampling rate, and the dead reckoning function ensures valid information even when passing through tall buildings and dense forests. The horizontal position error measured through the proposed system is 6.7cm, demonstrating a highly precise dynamic location measurement error within 10cm. The VRS network-RTK Linux system, which provides precise dynamic location information at a high sampling rate, supports a GPS waypoint planner function for user convenience, enabling easy destination setting based on GPS information.

Design of Decentralized Guidance Algorithm for Swarm Flight of Fixed-Wing Unmanned Aerial Vehicles (고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계)

  • Jeong, Junho;Myung, Hyunsam;Kim, Dowan;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.981-988
    • /
    • 2021
  • This paper presents a decentralized guidance algorithm for swarm flight of fixed-wing UAVs (Unmanned Aerial Vehicles). Considering swarm flight missions, we assume four representative swarm tasks: gathering, loitering, waypoint/path following, and individual task. Those tasks require several distinct maneuvers such as path following, flocking, and collision avoidance. In order to deal with the required maneuvers, this paper proposes an integrated guidance algorithm based on vector field, augmented Cucker-Smale model, and potential field methods. Integrated guidance command is synthesized with heuristic weights designed for each guidance method. The proposed algorithm is verified through flight tests using up to 19 small fixed-wing UAVs.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.