• Title/Summary/Keyword: waxy starch

Search Result 184, Processing Time 0.025 seconds

Rheological Properties of Gelatinized Dilute Rice Starch Solutions (쌀전분 희석 호화액의 유동학적 특성)

  • Kim, Young-Sug;Kim, Ju-Bong;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 1984
  • Rheological properties of waxy and non-waxy rice starch solutions were evaluated with a narrow gap rotational and Cannon Fenske viscometers. The gelatinized rice starch solutions containing 0.2-1.0% starch displayed pseudoplastic flow behavior. At higher starch level, degree of pseudoplasticity of waxy rice starch solutions increased, while that of non-waxy rice did not changed apparently. The consistency coefficient (K) of non-waxy rice starch solutions increased with increasing gelatinization temperature, but waxy rice starch solutions remained constant, and in alkaline aqueous solutions both of them showed increasing K values. The value of K increased exponentially with an increase in concentration. The effect of the temperature on the viscosity of the solutions followed Arrhenius' type equation, and the activation energies were in the range of 3.675-3.775 kcal/g-mol that were near to that of pure water. The changes of reduced viscosity with concentration were followed Huggin's equation and the values of intrinsic viscosity and interaction coefficient were 0.78-1.59 dl/g and 0.67-2.75, respectively.

  • PDF

Effect of Barley ${\beta}-Glucan$ on Dynamic Viscoelasticity of Barley Starch (${\beta}-Glucan$이 보리 전분의 동적점탄성에 미치는 영향)

  • Choi, Hee-Don;Seog, Ho-Moon;Kim, Yun-Sook;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1022-1027
    • /
    • 2003
  • The effect of ${\beta}$-glucan, prepared from waxy barley, on the dynamic viscoelasticity of nonwaxy and waxy barley starch during gelatinization and gelation was studied. Although no significant effect was observed on waxy starch, there were drastic changes in the dynamic viscoelasticity of nonwaxy starch. The gelatinization onset temperature of nonwaxy starch shifted to a higher temperature and showed a drastic increase in storage modulus and loss modulus at the range of $80{\sim}90^{\circ}C$. During the gelation of nonwaxy starch, ${\beta}$-glucan increased the rate of gel formation and weakened the network of starch and amylose by prohibiting their association. Therefore, we proved that there was no specific interaction between amylose and ${\beta}$-glucan. The addition of ${\beta}$-glucan to waxy starch seemed to have no effect of waxy starch.

Study on Bread-making Quality with Mixture of Waxy Barley-Wheat Flour 1. Rheological Properties of Dough Made with Waxy Barley-Wheat Flour Mixture (흰찰쌀보리 가루를 이용한 제빵특성 연구 1. 흰찰쌀보리-밀가루 혼합분 박죽의 물성)

  • 유정희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1034-1043
    • /
    • 1999
  • Rheological properties of dough made from waxy barley(Iri28) flour wheat flour mixtures with additives were investigated for the preparation of waxy barley bread using farinograph, extensograph and amy lograph. The water absorption, development time and dough weakness increased as the waxy barley flour level increased in all blends; however, dough stability decreased. Farinogram properties of 10% waxy barley flour added mixture were similar to those of 100% wheat flour. The addition of A.A(ascorbic acid), gluten, HPMC(hydroxy propyl methyl cellulose) improved rheological properties of dough with 30% waxy barley flour added mixture. In particular, stability and weakness of the dough showed greater dough improving effect by addition of A.A. For the extensograph data, strength, resistance and extensibility of dough decreased with increasing level of waxy barley flour. With the addition of additives, extensogram properties were variable for 30% waxy barley flour mixture. Of these additives, gluten had highest value in strength of dough. Addition of A.A and HPMC to 30% waxy barley flour added mixture resulted in an increase in the resistance and a decrease in the extensibility. Waxy barley flour added mixtures showed little higher gelatinization temperature on amylograph data than control. Maximum viscosity reduced as the waxy barley flour level increased. Also 30% waxy barley flour added mixture containing A.A and HPMC showed a decrease in maximum viscosity. But addition of gluten to 30% waxy barley flour mixture resulted an increase in the maximum viscosity. All of 30% waxy barley flour added mixture with additives had lower gelatinization temperature than those without additives. In the SEM images, starch granules were dispersed in a protein matrix. A non continuous, loose protein starch matrix was observed in all waxy barley flour mixture by SEM. Addition of additives gave the dough a more continuous structure with interactions between the starch granule and protein component.

  • PDF

Characterization of pulverized normal and waxy rice starches (멥쌀과 찹쌀전분의 초미립분쇄 후 특성변화연구)

  • Han, Jung-Ah
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.833-839
    • /
    • 2013
  • Separated normal and waxy rice starches were pulverized, and the physicochemical and digestive properties of the starches were determined. The size of both starch granules significantly decreased (less than $8{\mu}m$) after pulverization. For pasting properties, significant decreases of peak and setback viscosity were observed in both of pulverized starches than in native ones. The lower pasting temperature as well as increased solubility and water binding capacity of pulverized starches imply molecular degradation of starch by pulverization. For thermal properties, onset temperature and melting enthalpy significantly decreased after pulverization, especially in normal rice starch, however there was no difference in amylose-lipid complex before andafter pulverization. The slowly digestible and resistant starch portion of normal rice starch increased after pulverization, however, in waxy rice starch, the rapidly digestible portion increased.

Hot- Water Soluble and Insoluble Materials of Waxy Black Rice Starch (찰흑미(상해항혈나) 전분의 열수가용성 및 불용성 물질)

  • Choi, Gyeong-Cheol;Na, Hwan-Sik;Oh, Geum-Soon;Kim, Sung-Kon;Kim, Kwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.219-222
    • /
    • 2005
  • Some structural characteristics of hot-water soluble and insoluble starches (waxy black rice starch) were investigated. The hot-water soluble material content of waxy black rice starch was higher (16.6%) than that (13.4%) of Shinsunchalbyeo starch heated at 98$^{\circ}C$ for 8 min. The Amax and absorbance at 625 nm for hot-water soluble and insoluble material of waxy black rice starch were lower than those of Shinsunchalbyeo. Elution patterns of hot water soluble and insoluble materials by gel permeation chromatography (Sepharose CL-2B) were similar in both samples.

Physicochemical Properties of Domestic Millet Starches (국내산 조전분의 이화학적 특성)

  • Kim, Nam-Soo;Seog, Ho-Moon;Nam, Young-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.245-249
    • /
    • 1987
  • Physicochemical properties of domestic millet starches were determined. Amylose contents of nonwaxy and waxy millet starches were 28.0 and 8.0%, respectively. The water binding capacity of nonwaxy millet starch was slightly higher than that of waxy millet starch. There was no recognizable difference on granule size between nonwaxy and waxy millet starch. Abrupt increases in swelling power over $80^{\circ}C$ of gelatinization temperature were characteristic features of millet starches. The initiation of increase in light penetration was started slightly earlier in case of waxy millet starch. Maximum viscosities of $6{\sim}7%$ nonwaxy and waxy millet starch were 300-460 and 800-1080 B.U., respectively. The conspicuous break-down was noticed in waxy millet starch.

  • PDF

The Physico-Chemical Properties and Cooking Qualities of Barley Isogenic Lines (보리 Isogenic Lines의 이화학적 품질과 취반특성)

  • Lee, Min-Jae;Kwon, Kyoung-Soohn;Chang, Hak-Gil
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.301-306
    • /
    • 1997
  • This study is presented to investigate the physico-chemical properties and qualities for the starch isogenic lines bred in barley(Hordeum vulgare L.).The pearling yield showed higher value in Franubet and Wafranubet than others, but the whiteness of pearled barley varied with the cultivars. The milling rate showed excellence in Franubet, fractured granular lines, whereas that of the waxy and round endosperm isogenic lines is poor. Franubet, the lines having fractures starch granule, was highest in starch content. The highest value in swelling power and water-binding capacity of the barley was proved by the lines having waxy and fractured starch endosperms. The amylogram patterns indicated that the waxy lines such as Wanubet and Wafranubet have lower initial gelatinization temperature and higher maximum viscosity than those of the normal lines. ${\beta}-Glucan\;viscosity$ was generally higher in waxy barley but changed greatly with the cultivars. The water absorption, soluble solid and expansibility in cooking property showed the highest value in waxy and fractured starch granular lines, and the whiteness of cooked barley did not differ with cultivars.

  • PDF

Retrogradation Properties of Waxy Starches (찰 전분의 노화특성에 관한 연구)

  • Kim, Hyong-Soo;Lee, Mi-Sook;Woo, Ja-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.794-800
    • /
    • 1988
  • The retrogradation properties of waxy starches isolated from waxy rice(Shin sun, Tong il), waxy barley(Suwon # 227), waxy indian millet. waxy millet and Jobs tears(Yullmoo) were investigated. The extent of retrogradation determined by the glucoamyase method during freeze-thaw treatment and storage in low temperature$(0{\sim}5^{\circ}C)$ showed that six kinds of waxy starches were very slowly retrograded. The order of the retrogradation tendencies of these starches were waxy indian millet > Suwon # 227 Waxy millet > Yullmoo > Tong il > Shin sun. Waxy indian millet and Suwon # 227 starches were distinctively retrograded compared with other starches. Retrogradation properties observed during freeze-thaw 30 cycles were similar to those of storage for 30 days at $0{\sim}5^{\circ}C$. Suwon # 227, which has been the only recommened variety in our nation, was composed of 15% of non-waxy starch and 85% of waxy starch granule.

  • PDF

Effect of Alum on the Rheological Properties of Gelatinized Solutions of Nonwaxy and Waxy Rice Starches (멥쌀 및 찹쌀전분 호화용액의 리올로지 특성에 미치는 Alum 첨가의 영향)

  • Lee, Shin-Young;Lee, Sang-Gui;Kwon, Ik-Boo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.776-782
    • /
    • 1995
  • The effects of alum$(Al{\cdot}K(SO_4)_2{\cdot}12H_{2}O)$ on the rheological properties of $3{\sim}9%(w/v)$ gelatinized solutions of nonwaxy and waxy rice starches were investigated to evaluate the possibility of utilizing a starch modifying agent. Gelatinized non-waxy and waxy rice starch solutions showed a pseudoplastic flow behavior with yield stress. Pseudoplasticity of two rice starch solutions increased by the addition of alum$(0.05{\sim}1.0%,\;w/w)$. Alum increased the yield stresses and consistency indexes of two rice starches and these values decreased with increasing starch concentration. Also, alum(0.5%, w/w) increased the flow activation energy of gelatinized waxy rice starch solution and activation energy decreased with increasing waxy rice starch concentration in the range of $3{\sim}7%(w/v)$, but for the nonwaxy rice starch, activation energy decreased at starch concentration of 7%(w/v). From the above results, it was found that alum had the possibility of utilizing a modifying agent for the rheological property of gelatinized starch solution.

  • PDF

Relationship of Physicochemical Characteristics and Ethanol Yield of Korean Barley (Hordeum vulgare L.) Cultivars

  • Lee, Mi-Ja;Kim, Yang-Kil;Park, Jong Chul;Kim, Young-Jin;Kim, Kyeong-Hoon;Choi, Induck;Choi, Jae-Seong;Kim, Kee-Jong;Kim, Hyung-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • The grain and agronomic characteristics of Korean barley cultivars were investigated with respect to ethanol yield. Test weight, grain yield, and starch yield showed noticeable variation among the cultivars. Grain yields were higher in covered barley and non-waxy barley. Starch yield was higher in non-waxy barley than waxy barley. Protein, ${\beta}$-glucan, and starch content of tested cultivars ranged in 10.0-12.9%, 4.4-7.5% and 49.7-65.3%, respectively. Naked barley cultivar had higher starch content than covered barley cultivar. However, covered barley had high starch yield because it has higher grain yield than naked barley. Covered barley cultivar had higher husk content, ranging 7.6-14.0%, than that of naked barley cultivar, ranging 5.3-8.0%. Starch content was positively correlated with amylose content, test weight, ethanol yield and negatively correlated with protein, husk, ${\beta}$-glucan content. Ethanol yield per ton was positively correlated with starch content, but negatively correlated with husk content. Ethanol yield per hectare was positively correlated with starch yield, grain yield, grain weight and negatively correlated with protein, test weight. From this research, the important characteristics of barley cultivar as a bioethanol producing material were starch content and grain yield. Optimum barley genotype was non-waxy naked barley that had low protein, ${\beta}$-glucan, husk content, and high starch content and grain yield.