• Title/Summary/Keyword: wax moth

Search Result 51, Processing Time 0.027 seconds

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

Gene Expression and Regulation of Wax Moth Transferrin by PAMPs and Heavy Metals

  • Han, Jik-Hyon;Lee, Ji-Sook;Lee, Chang-Seok;Koh, Sang-Kyun;Seo, Sook-Jae;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.297-304
    • /
    • 2009
  • A complete mRNA sequence of transferrin from the wax moth, Galleria mellonella, was obtained, and compared with those of other species. We previously reported that the sequence was most similar to those of Manduca sexta and Bombyx mori. As in other moths, G. mellonella transferrin had only one iron-binding site at its N-terminal region. Semi-qRT PCR was conducted to investigate tissue-specific distribution and transcriptional regulation of the wax moth transferrin mRNA. Larval muscle and fat body contained larger quantity of mRNA than other tested tissues. In this study, it was observed that iron and cadmium regulated transferrin transcription, and this regulation pattern was tissue specific. Iron up-regulated transferrin mRNA level in fat body, while suppressed it in the Malpighian tubules and silk glands. Cadmium decreased the mRNA level in fat body, muscle, and Malpighian tubules, but significantly increased the mRNA level in silk glands. In addition, the mRNA expression was induced by all tested pathogen-associated molecular patterns (PAMPs) including LPS, lipoteichoic acid (LTA), glucan, and even chitin.

Male-Specific Protein (MSP) of Wax Moth - a New Member of JHBP Family

  • Jikhyon Han;Lee, Chang-Seok;Yun, Chi-Young;Kim, Hak-Ryul
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.81-81
    • /
    • 2003
  • Male-specific protein (MSP) is a soluble protein which is accumulated in high amounts In the hemolymph and other organs of adult male wax moth. The MSP was purified from adult male wax moth by gel filtration and reversed Phase column chromatography, and its amino acid sequence was determined. Three internal amino acid sequences of MSP were obtained by the in-gel digestion method using trypsin because of its blocked N-terminus. (omitted)

  • PDF