• Title/Summary/Keyword: waves and currents

Search Result 257, Processing Time 0.029 seconds

Polarographic Behavior of Cadmium (II) and Copper (II) Complexes of 1,5-Diphenylcarbohydrazide in Dimethylsulfoxide (디메틸술폭시드 속에서 1,5-디페닐카르보히드라지드의 카드뮴 (II) 및 구리 (II) 착물에 대한 폴라로그래피적 거동)

  • Chil-Nam Choe
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • Polarographic behavior of cadmium(II) and copper (II) complexes of 1,5-diphenylcarbohydrazide in dimethylsulfoxide have been investigated by the DC polarography. The reduction processes are estimated as follows; Cd(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.12V)}$${\to}$Cd(I)${\cdot}$DPH Complex. Cd(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.74V)}$${\to}$Cd(Hg) + nDPH. Cu(II)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.44V)}$${\to}$Cu(I)${\cdot}$DPH Complex. Cu(I)${\cdot}$DPH Complex$\frac{e^-}{(E_{\frac{1}{2}}=-0.84V)}$${\to}$Cu(Hg) + nDPH. The limiting currents of all reduction wave are irreversible. The number of ligand and the dissociation constant for Cu(I)${\cdot}$1.5-diphenylcarbohydrazide complex were found to be 2 and 5.12 ${\times}10^{-8}$, respectively. All reduction waves of complexes are irreversible. Based on the experimental results, the polarographic reductions of complexes in dimethylsulfoxide solution occurred in two one-electron steps.

  • PDF

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

Characteristics of Recent Foraminifera and Surface Sediments in Gomso- Bay Tidal Flat, West Coast of Korea: Potential for Paleoenvironmental Interpretations (곰소만 조간대의 현생 유공충과 표층 최적물의 특성: 고환경 해석에 적용 가능성)

  • 우한준;장진호
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.184-196
    • /
    • 1995
  • The line-SW is located in the mouth of Gomso Bay (20 Km long and 5-8 Km wide),west coast of Korea. This area is composed of sand flat, mud flat, sand shoal and chenier, The difference of physical, geological and geomorphic conditions in subenvironments of the bay may control and produce distingtive foraminiferal populations and assemblages. This study investigates whether five a priori subenvironments (five local zonations) in Gomso-Bay tidal flat can be distinguished from each other on the basis of total (living plus dead) foraminiferal assemblages. Seventy-four species (67 benthic; 7 planktonic) were recorded in total assemblages of surface sediments from 10 stations. Ammonia beccarii tepida, Discorbis candeiana, Elphidium etigoense and Eponides nipponicus were most dominant species in living and total assemblages. The relative abundance (%) of living population was high at upper flat and decreased from upper to lower flat. The low percentages of living populations in middle to lower flat are probably influenced by the decreasing reproduction of foraminifera caused by high energy condition and addition of dead species from offshore. The occurence of planktonic foraminifera in middle to lower flat (5.3∼6.6%) indicates introduction of planktonic foraminifera from offshore by storm and/or tidal current. The relatively high numbers of species in lower middle to lower flat are probably caused by a mixing of faunas from these areas and offshore. The high numbers of total individuals per 50 ml of sediment in upper flat indicate that this area is a relatively stable environment where waves and currents are protected by the chenier. Five biofacies of the total foraminiferal assemblages were established on the basis of dominant species (those representing more than 20% of the total assemblages in any station) in the five a priori subenvironments recognized along the Line-SW transect in Gomso-Bay tidal flat. Five biofacies are potentially useful in paleoenvironmental interpretation in late Quaternary Gomso-Bay tidal deposits.

  • PDF

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Sedimentary Characteristics and Evolution History of Chenier, Gomso-Bay tidal Flat, Western Coast of Korea (황해 곰소만 조간대에 발달한 Chenier의 퇴적학적 특성과 진화)

  • 장진호;전승수
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.212-228
    • /
    • 1993
  • A chenier, about 860 m long, 30 to 60 m wide and 0.6∼1.6 m high, occurs on the upper muddy tidal flat in the Gomso bay, western coast of Korea, It consists of medium to fine sands and shells with small amounts of subangular gravels. Vertical sections across the chenier show gently landward dipping stratifications which include small-scale cross-bedded sets. the most probable source of the chenier is considered to be the intertidal sandy sediments. Vibracores taken along a line transversing the tidal flat reveal that the intertidal sand deposits are more than 5 m thick near the low-water line and become thinner toward the chenier. The most sand deposits are undertrain by tidal muds which occur behind the chenier as salt marsh deposits. C-14 age dating suggests that the sand deposits and the chenier are younger than about 1,800 years B.P. The chenier has originated from the intertidal sand shoals at the lower to mid sand flat, and has continuously moved landward. A series of aerial photographs (1967∼1989) reveal that intertidal sand shoals (predecessor of the western part of chenier) on the mid flat have continuously moved landward during the past two decades and ultimately attached to the eastern part of the chenier already anchored at the present position in the late 1960s. Repeated measurements (four times between 1991 and 1992) of morphological changes of the chenier indicate that the eastern two thirds of the chenier, mostly above the mean high water, has rarely moved whereas the western remainder below the mean high water, has moved continuously at a rate of 0.5 m/mo during the last two years (1991∼1992). This displacement rate has been considerably accelerated up to 1.0 m/mo in winter, and during a few days of typhoon in the summer of 1992 the displacement amounted to about 8∼11 m/mo for the entire chenier. these facts suggest that macro-tidal currents, coupled with winter-storm waves and infrequent strong typhoons, should play a major role for the formation and migration of chenier after 1,800 B.P., when the sea level already rose to the present position and thereafter remained constant.

  • PDF

Structural Safety Assessment of a Sunken Ship Considering Hull Corrosion and Damaged Members - Focus on the Sunken Ship 'No. 7 HaeSung' - (선체 부식 및 손상 부재를 고려한 침몰선박의 구조 안전성 평가에 관한 연구 - 제7 해성호를 중심으로 -)

  • Lee, Seung Hyun;Kim, Won Don;Suh, Jae-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.332-340
    • /
    • 2016
  • Sunken ships cause damage to the environment due to the dispersal of fuel oil and harmful cargo goods in the hull. Since the sunken ship is mostly flooded by the seabed, it tends to be in a relatively stable condition. However, the heavy body, together with the load of remaining goods in the cargo hold, the constant contact with the seabed, and ocean currents and tidal waves, can affect dispersal of residual fuel oils out of the sunken ship. Corrosion of the sunken ship starts upon sinking, decreasing the thickness of the hull structure and sub-materials. Therefore, it is necessary to assess the structural stability against the potential breakdown of the sunken ship. Whilst evaluating the danger of the sunken ship, this result should be reflected in 'the possible discharge'. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship. The structural stability assessment to estimate the collapsibility of the hull was structure targeted at the sunken ship 'No. 7 HaeSung', which was classified as the prime example for the intensive management of sunken ships. This study was undertaken to suggest a procedure for a step by step evaluation to assess the structural stability a sunken ship and to propose a method to conduct a structural safety assessment that estimates the collapsibility of the hull by targeting the sunken ship 'No. 7 HaeSung',which was classified as the prime example for the intensive management of sunken ships. The collapsibility of the hull structure was estimated Based on the damage size of the hull structure, and the corrosion rate of the hull structure and sub-materials due to the seawater after sinking. It was confirmed that there was a low possibility of the total destruction of the hull structure at the current time. However, there is a high possibility in the potential failure of the hull structure due to increased rate of corrosion thereafter. Therefore, we believe continuous study on influence of corrosion and marine environment change to sunken ship's structural safety is necessary.