• 제목/요약/키워드: wavenumber

검색결과 205건 처리시간 0.029초

난류 경계층에서 컴플라이언트 코팅된 벽면과 점탄성 벽면의 방사 소음에 관한 실험적 연구 (Radiated Sound from Compliant and Viscoelastic Plates in a Turbulent Boundary Layer)

  • 이창준;이승배;권오섭;전우평
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.294-301
    • /
    • 2003
  • We examine a problem in which porous/viscoelastic compliant thin plates are subject to pressure fluctuations under transitional or turbulent boundary layer. Measurements are presented of the frequency spectra of the near-field pressure and radiated sound by compliant surface. A porous plate consisting of 5mm thick. open-cell foam with fabric covering and a viscoelastic-painted plate of 1mm thick over an acoustic board of 4mm thick were placed over a rigid surface in an anechoic wind tunnel. Streamwise velocity and wall pressure measurements were shown to highly attenuate the convective wall pressure energy when the convective wavenumber (k$_{c}$h) was 3.0 or more. The sound source localization on the compliant walls is applied to the measurement of radiated sound by using an acoustic mirror system.

근접음장 음향 홀로그래피를 이용한 평판내의 속도분포 예측 (The reconstruction of Structure Velocity Field Using Nearfield Acoustic Holography)

  • 권오훈;이효근;박윤식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.251-259
    • /
    • 1994
  • Nearfield acoustic holography is known as a powerful tool to study sound radiation from a structure. In this work, the so called backward propagation of sound pressure field is studied to obtain the structure velocity distribution. The results, which were obtained using FFT algorithms, are presented for a finite plate excited at the frequencies above and below coincidence. These results illustrate the effect of stand-off distance and noise. An optimum cutoff frequency in wavenumber domain was suggested to reduce the effects of evanescent wave in the backward propagation. The experimental results were also included for a plate to demonstrate the effectiveness of the suggested cutoff frequency. The optimum cutoff frequency to exclude the unwanted noise in the process of reconstruction of the velocity field gives the good results in both simulations and experiments.

철로를 따라 장거리 전파하는 고주파수 대역 파동 특성 연구 (Waves propagating in railway tracks at high frequencies)

  • 유정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.791-796
    • /
    • 2011
  • In order to understand long range wave propagation in railway tracks, it is required to identify how far vibrations can travel along a rail. To answer this question, the attenuation characteristics of the main propagating waves are required as a function of distance. In this work, it is identified which wave types predominantly propagate on various regions of the rail cross-section. Then decay rates of propagating waves in railway tracks are investigated for frequencies up to 80 kHz. A numerical method called the Wavenumber Finite Element (WFE) method is utilized to predict dispersion curves and decay rates for a rail on a continuous foundation. In order to validate the simulated results, measurements have been performed on a test track and an operational railway track. The measured results are compared with the output of the simulations and good agreements are found between them.

  • PDF

원통면 음향 홀로그래피를 이용한 음장예측의 오차 해석 및 적용 방법 (Errors and applicabilities of cylindrical acoustic holography)

  • 김시문;권휴상;김양한
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.37-48
    • /
    • 1995
  • The prediction of sound pressure using acoustic holography has been recognized as a useful tool for the visualization of sound field. Cylindrical acoustic holography amongst acoustic holographic methods planar, spherical, and cylindrical ones-has a wide range of application since its rather simple construction and easy implementation for the sources. To utilize the propery of cylindrical holographic method, estimation errors associated with holographic parameters such as aperture size and sampling space must be envisaged. In this these errors have been studied by numerical simulation and the relation between the errors and the spectrum in wavenumber domain is described. The results are also confirmed by simple experiments.

  • PDF

Seismic waveform tomography in the frequency-space domain: selection of the optimal temporal frequency for inversion

  • Yokota Toshiyuki;Matsushima Jun
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.19-24
    • /
    • 2004
  • Frequency-space domain full-wave tomography is a promising technique for delineating detailed subsurface structure with high resolution. However, this method requires criteria for the selection of a set of optimal temporal frequency components, to achieve stability in the sequence of inversion processes together with computational efficiency. We propose a method of selecting optimal temporal frequencies, based on wavenumber continuity. The proposed method is tested numerically and is shown to be able to select an optimal set of frequency components that are sufficient to image the anomalies.

조화집중하중을 받는 무한보에서의 음향방사 (Sound Radiation From Infinite Beams Under the Action of Harmonic Point Forces)

  • 김병삼;홍동표
    • 소음진동
    • /
    • 제2권1호
    • /
    • pp.33-39
    • /
    • 1992
  • The problem of sound radiation from infinite elastic beams under the action of harmonic point forces is studied. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z = 0 and to be axially infinite. The beam material and the elastic foundation re assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results are examined as a function of wavenumber ratio$(\gamma)$ and stiffness factor$(\Psi)$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

조화분포이동하중을 받는 무한보에서의 음향방사 (Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces)

  • 김병삼;이태근;홍동표
    • 소음진동
    • /
    • 제3권3호
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Relationships between the Raman Excitation Photon Energies and Its Wavenumbers in Doped trans-Polyacetylene

  • Kim, Jin-Yeol;Kim, Eung-Ryul;Ihm, Dae-Woo;Tasumi, Mitsuo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권10호
    • /
    • pp.1404-1408
    • /
    • 2002
  • The resonance Raman spectra of trans-polyacetylene films doped heavily with electron donor (Na) and acceptor (HClO4) have been measured with excitation wavelengths between 488- and 1320-nm, and the relationships between the Raman excitation photon energies (2.54-0.94 eV) and its wavenumbers were discussed. We found the linear dependence of the Raman shifts with the exchanges of excitation photon energies. In particular, the Raman wavenumbers in the C=C stretching $(V_1$ band) showed a dramatic decrease with the increase in Raman excitation photon energies. In the case of acceptor doping, its change is larger than that of donor doping. The observed wavenumber (1255-1267 $cm^{-1}$) of the $V_2$ band (CC stretch) of Na-doped form is lower than that of the corresponding band (1290-1292 $cm^{-1}$) of its pristine trans-polyacetylene, whereas the contrary is the case for the HClO4 doped form (1295-1300 $cm^{-1}$). The origin of doping-induced Raman bands is discussed in terms of negative and positive polarons.

A general closed-form solution to a Timoshenko beam on elastic foundation under moving harmonic line load

  • Luo, Wei-Li;Xia, Yong;Zhou, Xiao-Qing
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.387-397
    • /
    • 2018
  • In this paper, a general closed-form solution for evaluating the dynamic behavior of a Timoshenko beam on elastic foundation under a moving harmonic line load is formulated in the frequency-wavenumber domain and in a moving coordinate system. It is found that the characteristic equation is quartic with real coefficients only, and its poles can be presented explicitly. This enables the substitution of these poles into Cauchy's residue theorem, leading to the general closed-form solution. The solution can be reduced to seven existing closed-form solutions to different sub-problems and a new closed-form solution to the subproblem of a Timoshenko beam on an elastic foundation subjected to a moving quasi-static line load. Two examples are included to verify the solution.

Wrinkling of a homogeneous thin solid film deposited on a functionally graded substrate

  • Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.215-225
    • /
    • 2020
  • Thin films easily wrinkle under compressive loading due to their small bending stiffness resulting from their tiny thickness. For a thin film deposited on a functionally graded substrate with non-uniform stiffness exponentially changes along the length span in this paper, the uniaxial wrinkling problem is solved analytically in terms of hyper-Bessel functions. For infinite, semi-infinite and finite length systems the wrinkling load and wrinkling wavenumber are determined and compared with those in literature. In comparison with a homogeneous substrate-bounded film in which the wrinkling pattern is uniform along the length span, for a functionally graded substrate-film system the wrinkles accumulate around the softer location of the functionally graded substrate. Therefore, the effective length of the film influenced by the wrinkles decreases, the amplitude of the wrinkles on softer regions of the functionally graded substrate grows and the wrinkling load of the functionally graded substrates with higher softening rate decreases more. The results of the current research are expected to be useful in science and technology of thin films and wrinkling of the structures especially living tissues.