• Title/Summary/Keyword: wavelet.

Search Result 3,589, Processing Time 0.025 seconds

Wavelet Transform Technology for Translation-invariant Iris Recognition (위치 이동에 무관한 홍채 인식을 위한 웨이블렛 변환 기술)

  • Lim, Cheol-Su
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.459-464
    • /
    • 2003
  • This paper proposes the use of a wavelet based image transform algorithm in human iris recognition method and the effectiveness of this technique will be determined in preprocessing of extracting Iris image from the user´s eye obtained by imaging device such as CCD Camera or due to torsional rotation of the eye, and it also resolves the problem caused by invariant under translations and dilations due to tilt of the head. This technique values through the proposed translation-invariant wavelet transform algorithm rather than the conventional wavelet transform method. Therefore we extracted the best-matching iris feature values and compared the stored feature codes with the incoming data to identify the user. As result of our experimentation, this technique demonstrate the significant advantage over verification when it compares with other general types of wavelet algorithm in the measure of FAR & FRR.

Frequency Estimation Technique using Recursive Discrete Wavelet Transform (반복 이산 웨이브릿 변환을 이용한 주파수 추정 기법)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.76-81
    • /
    • 2011
  • Power system frequency is the main index of power quality indicating an abnormal state and disturbances of systems. The nominal frequency is deviated by sudden change in generation and load or faults. Power system is used as frequency relay to detection for off-nominal frequency operation and connecting a generator to an electrical system, and V/F relay to detection for an over-excitation condition. Under these circumstances, power system should maintain the nominal frequency. And frequency and frequency deviation should accurately measure and quickly estimate by frequency measurement device. The well-known classical method, frequency estimation technique based on the DFT, could be produce the gain error in accuracy. To meet the requirements for high accuracy, recently Wavelet transforms and analysis are receiving new attention. The Wavelet analysis is possible to calculate the time-frequency analysis which is easy to obtain frequency information of signals. However, it is difficult to apply in real-time implementation because of heavy computation burdens. Nowadays, the computational methods using the Wavelet function and transformation techniques have been searched on these fields. In this paper, we apply the Recursive Discrete Wavelet Transform (RDWT) for the frequency estimation. In order to evaluate performance of the proposed technique, the user-defined arbitrary waveforms are used.

Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies

  • Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1812-1821
    • /
    • 2014
  • Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.

Wavelet analysis and enhanced damage indicators

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.23-49
    • /
    • 2007
  • Wavelet transforms are the emerging signal-processing tools for damage identification and time-frequency localization. A small perturbation in a static or dynamic displacement profile could be captured using multi-resolution technique of wavelet analysis. The paper presents the wavelet analysis of damaged linear structural elements using DB4 or BIOR6.8 family of wavelets. Starting with a localized reduction of EI at the mid-span of a simply supported beam, damage modeling is done for a typical steel and reinforced concrete beam element. Rotation and curvature mode shapes are found to be the improved indicators of damage and when these are coupled with wavelet analysis, a clear picture of damage singularity emerges. In the steel beam, the damage is modeled as a rotational spring and for an RC section, moment curvature relationship is used to compute the effective EI. Wavelet analysis is performed for these damage models for displacement, rotation and curvature mode shapes as well as static deformation profiles. It is shown that all the damage indicators like displacement, slope and curvature are magnified under higher modes. A localization scheme with arbitrary location of curvature nodes within a pseudo span is developed for steady state dynamic loads, such that curvature response and damages are maximized and the scheme is numerically tested and proved.

Classification Technique of Kaolin Contaminants Degree for Polymer Insulator using Electromagnetic Wave (방사전자파를 이용한 고분자애자의 오손량 분류기법)

  • Park Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-168
    • /
    • 2006
  • Recently, diagnosis techniques have been investigated to detect a Partial Discharge associated with a dielectric material defect in a high voltage electrical apparatus, However, the properties of detection technique of Partial Discharge aren't completely understood because the physical process of Partial Discharge. Therefore, this paper analyzes the process on surface discharge of polymer insulator using wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time~frequency domain. As it is important to develop a non-contact method for detecting the kaolin contamination degree, this research analyzes the electromagnetic waves emitted from Partial Discharge using wavelet transform. This result experimentally shows the process of Partial Discharge as a two-dimensional distribution in the time-frequency domain. Feature extraction parameter namely, maximum and average of wavelet coefficients values, wavelet coefficients value at the point of $95\%$ in a histogram and number of maximum wavelet coefficient have used electromagnetic wave signals as input signals in the preprocessing process of neural networks in order to identify kaolin contamination rates. As result, root sum square error was produced by the test with a learning of neural networks obtained 0.00828.

Optimal Structure of Modular Wavelet Network Using Genetic Algorithm (유전 알고리즘을 이용한 모듈라 웨이블릿 신경망의 최적 구조 설계)

  • Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Yong-Taek;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.7-13
    • /
    • 2001
  • Modular wavelet neural network combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural network and kind of modular network. In this paper, an effective method to construct an optimal modular wavelet network is proposed using genetic algorithm. Genetic Algorithm is used to determine dilations and translations of wavelet basis functions of wavelet neural network in each module. We apply the proposed algorithm to approximation problem and evaluate the effectiveness of the proposed system and algorithm.

  • PDF

A Study on the Algorithm for Detection of Partial Discharge in GIS Using the Wavelet Transform

  • J.S. Kang;S.M. Yeo;Kim, C.H.;R.K. Aggarwal
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.214-221
    • /
    • 2003
  • In view of the fact that gas insulated switchgear (GIS) is an important piece of equipment in a substation, it is highly desirable to continuously monitor the state of equipment by measuring the partial discharge (PD) activity in a GIS, as PD is a symptom of an insulation weakness/breakdown. However, since the PD signal is relatively weak and the external noise makes detection of the PD signal difficult, it therefore requires careful attention in its detection. In this paper, the algorithm for detection of PD in the GIS using the wavelet transform (WT) is proposed. The WT provides a direct quantitative measure of the spectral content and dynamic spectrum in the time-frequency domain. The most appropriate mother wavelet for this application is the Daubechies 4 (db4) wavelet. 'db4', the most commonly applied mother wavelet in the power quality analysis, is very well suited to detecting high frequency signals of very short duration, such as those associated with the PD phenomenon. The proposed algorithm is based on utilizing the absolute sum value of coefficients, which are a combination of D1 (Detail 1) and D2 (Detail 2) in multiresolution signal decomposition (MSD) based on WT after noise elimination and normalization.

Direct Adaptive Control System for Path Tracking of Mobile Robot Based on Wavelet Fuzzy Neural Network (이동 로봇의 경로 추종을 위한 웨이블릿 퍼지 신경 회로망 기반 직접 적응 제어 시스템)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2432-2434
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

  • PDF

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

Performance of Wavelet Packet Multicarrier Modulation Systems with Narrowband Interference (웨이블릿 패킷 다중반송파 변조 시스템의 협대역 간섭에 대한 성능)

  • Won, Yu-Jun;Seo, Bo-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.4
    • /
    • pp.79-85
    • /
    • 2008
  • These days, orthogonal frequency division multiplexing (OFDM) transmission method is widely used for broadband communication systems. The OFDM, which uses sine waves as orthogonal basis functions, is one of the orthogonal waveform modulation techniques. In this paper, we investigate a wavelet packet modulation method which uses wavelet packets instead of sine waves as the basis functions. The wavelet packets may have different patterns in two dimensional time-frequency domain, and we can design the packets appropriate for the channel environments with much flexibility. In this paper, we investigate the characteristics of the wavelet packet modulation as one of the multicarrier modulation methods, And we illustrate by simulations that narrowband interference can be reduced effectively by control the bandwidth of the wavelet packets.