• Title/Summary/Keyword: wavelet packet transform

Search Result 95, Processing Time 0.022 seconds

Underwater Transient Signal Detection Using Higher-order Statistics and Wavelet Analysis (고차통계 기법과 웨이브렛을 이용한 수중 천이신호 탐지)

  • 조환래;오선택;오택환;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.670-679
    • /
    • 2003
  • This paper deals with application of wavelet transform, which is known to be good for time-frequency analysis, in order to detect the underwater transient signals embedded in ambient noise. A new detector of acoustic transient signals is presented. It combines two detection tools: wavelet analysis and higher-order statistics. Using both techniques, the detection of the transient signal is possible in low signal to noise ratio condition. The proposed algorithm uses the wavelet transform of a partition of the signal on frequency domain, and then higher-order statistics tests the Gaussian nature of the segments.

Lung Sound Classification Using Hjorth Descriptor Measurement on Wavelet Sub-bands

  • Rizal, Achmad;Hidayat, Risanuri;Nugroho, Hanung Adi
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1068-1081
    • /
    • 2019
  • Signal complexity is one point of view to analyze the biological signal. It arises as a result of the physiological signal produced by biological systems. Signal complexity can be used as a method in extracting the feature for a biological signal to differentiate a pathological signal from a normal signal. In this research, Hjorth descriptors, one of the signal complexity measurement techniques, were measured on signal sub-band as the features for lung sounds classification. Lung sound signal was decomposed using two wavelet analyses: discrete wavelet transform (DWT) and wavelet packet decomposition (WPD). Meanwhile, multi-layer perceptron and N-fold cross-validation were used in the classification stage. Using DWT, the highest accuracy was obtained at 97.98%, while using WPD, the highest one was found at 98.99%. This result was found better than the multi-scale Hjorth descriptor as in previous studies.

Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission

  • Dastjerdi, Parinaz Belalpour;Ahmadi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.545-553
    • /
    • 2018
  • Mode II delamination propagation is an important damage mode in laminated composites and this paper aims to investigate the behavior of this damage in laminated composite materials using acoustic emission (AE) technique. Three different lay-ups of glass/epoxy composites were subjected to mode II delamination propagation and generated AE signals were recorded. In order to investigate the propagation of delamination behavior of these specimens, AE signals were analyzed using Wavelet Packet Transforms (WPT) and Fast Fourier Transform (FFT). In addition, conventional AE analyses were used to enhance understanding of the propagation of delamination damage. The results indicate that different fracture mechanisms were the main cause of the AE signals. The dominant mechanisms in all the specimens were matrix cracking, fiber/matrix debonding and fiber breakage, with varying percentage of the damage mechanisms for each lay-up. Scanning Electron Microscopy (SEM) observations were in accordance to the AE results.

A Real-Time Pattern Recognition for Multifunction Myoelectric Hand Control

  • Chu, Jun-Uk;Moon, In-Hyuk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.842-847
    • /
    • 2005
  • This paper proposes a novel real-time EMG pattern recognition for the control of a multifunction myoelectric hand from four channel EMG signals. To cope with the nonstationary signal property of the EMG, features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a linear-nonlinear feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. We implement a real-time control system for a multifunction virtual hand. From experimental results, we show that all processes, including virtual hand control, are completed within 125 msec, and the proposed method is applicable to real-time myoelectric hand control without an operation time delay.

  • PDF

Enhanced FCME Thresholding for Wavelet-Based Cognitive UWB over Fading Channels

  • Hosseini, Haleh;Fisal, Norsheila;Syed-Yusof, Sharifah Kamilah
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.961-964
    • /
    • 2011
  • The cognitive ultra-wideband (UWB) network detects interfering narrowband systems and adapts its configuration accordingly. An inherently adaptive and flexible candidate for cognitive UWB transmission is the wavelet packet multicarrier modulation (WPMCM). In this letter, we use an enhanced forward consecutive mean excision thresholding algorithm to tackle the noise uncertainty in the wavelet-based sensing of WPMCM systems, and mathematical analysis is performed for primary user channel fading. As a benchmark, we compare the proposed system with a conventional fast Fourier transformation-based system, and performance investigation proves significant improvements when primary and secondary links are subjected to multipath fading and noise.

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

Colorization Algorithm Using Wavelet Packet Transform (웨이블릿 패킷 변환을 이용한 흑백 영상의 칼라화 알고리즘)

  • Ko, Kyung-Woo;Kwon, Oh-Seol;Son, Chang-Hwan;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Coloriztion algorithms, which hide color information into gray images and find them to recover color images, have been developed recently. In these methods, it is important to minimize the loss of original information while the color components are embedded and extracted. In this paper, we propose a colorization method using a wavelet packet transform in order to embed color components with minimum loss of original information. In addition, the compensation processing of color saturation in the recovered color images is achieved. In the color-to-gray process, an input RGB image is converted into Y, Cb, and Cr images, and a wavelet packet transform is applied to the Y image. After analyzing the amounts of total energy for each sub-band, color components are embedded into two sub-bands including minimum amount of energy on the Y image. This makes it possible not only to hide color components in the Y image, but to recover the Y image with minimum loss of original information. In the gray-to-color process, the color saturation of the recovered color images is decreased by printing and scanning process. To increase color saturation, the characteristic curve between printer and scanner, which can estimate the change of pixel values before and after printing and scanning process, is used to compensate the pixel values of printed and scanned gray images. In addition, the scaling method of the Cb and Cr components is applied to the gray-to-color process. Through the experiments, it is shown that the proposed method improves both boundary details and color saturation in the recovered color images.

The Recognition and Segmentation of the Road Surface State using Wavelet Image Processing (웨이블릿 영상처리에 의한 도로표면상태 인식 및 분류)

  • Han, Tae-Hwan;Ryu, Seung-Ki;Song, Wonseok;Lee, Seung-Rae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This study focus on segmentation process that classifies road surfaces into 5 different categories, dry, wet water, icy, and snowy surfaces by analyzing asphalt-paved road images taken in daylight. By using the polarization coefficients, the proportions of horizontally polarized components to vertically polarized components, regions with over 1.3 polarization coefficients are classified as wet surfaces. Except for wet surfaces, the decision process a lies time-frequency analysis to other parts by using the third order wavelet packet transform. In addition, by using the average frequency characteristics of dry and icy surfaces from image templates, decide which is closer to a test image, and finally identify dry and icy surfaces. It is confirmed that the reposed estimation and segmentation of recognition on various images. This can be interpreted as an indication that image-only mad surface condition supervision is probable.

Grid Noise Removal in Computed Radiography Images Using the Combined Wavelet Packet-Fourier Method (CR영상에서 웨이블릿 패킷-푸리에 방법을 이용한 그리드 잡음 제거)

  • Lee, A Young;Kim, Dong Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.175-182
    • /
    • 2012
  • The scattered radiation always occurs when X-ray strikes the object. To absorb the scattered X-rays, the antiscatter grids are used, however these grids images are superimposed in the projection radiography images. When those images are displayed on the monitor, moir$\acute{e}$ patterns are overlapped over the images and disturb the anatomical informations. Most of the researches performed to date removed the grid noises by calculating or observing those frequencies in one dimensional frequency domain, two dimensional wavelet transform or Fourier transform. Those methods filtered not only the grid noises but also diagnostic informations. In this paper, we proposed the combined wavelet packet-Fourier method to remove the grid artifact in CR images. For the phantom image, the proposed method achieved from 5.2 to 7.4 dB better than others in SNR and for CR images by rejecting the grid noise bands effectively while leaving the remaining bands unchanged, the loss of images could get minimal results.

Performance Analysis for Digital watermarking using Quad-Tree Algorithm based on Wavelet Packet (웨이블렛 패킷 기반 쿼드트리 알고리즘을 이용한 디지털 워터마킹의 성능 분석)

  • Chu, Hyung-Suk;Kim, Han-Kil;An, Chong-Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.310-319
    • /
    • 2010
  • In this paper, digital watermarking method using wavelet transform and quad-tree algorithm is proposed. The proposed algorithm transforms the input image by DWT(Discrete Wavelet Transform) and AWPT(Adaptive Wavelet Packet Transform), inserts the watermark by quad-tree algorithm and the Cox's algorithm. The simulation for performance analysis of the proposed algorithm is implemented about the effect of embedding watermark in each subband coefficient (HH, LH, HL) of DWT, each DWT level, and each AWPT level. The simulation result by using DWT is compared with that using AWPT in the proposed algorithm. In addition, the effect of embedding watermark in the lowest frequency band (LL) is simulated. As a simulation result using DWT, the watermarking performance of simultaneously embedding in HH, LH, and HL band of DWT(6 level) is better than that of different cases. The result of AWPT(3 level) improves the correlation value compared to that of DWT(3 level). In addition, insertion the watermark to the LL band about 30~60% of all watermarks improves the correlation value while PSNR performance decreases 1~2dB.