• 제목/요약/키워드: wavelet packet analysis

검색결과 51건 처리시간 0.02초

Separation of background and resonant components of wind-induced response for flexible structures

  • Li, Jing;Li, Lijuan;Wang, Xin
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.607-623
    • /
    • 2015
  • The wind-induced dynamic response of large-span flexible structures includes two important components-background response and resonant response. However, it is difficult to separate the two components in time-domain. To solve the problem, a relational expression of wavelet packet coefficients and power spectrum is derived based on the principles of digital signal processing and the theories of wavelet packet analysis. Further, a new approach is proposed for separation of the background response from the resonant response. Then a numerical example of frequency detection is provided to test the accuracy and the spectral resolution of the proposed approach. In the engineering example, the approach is applied to compute the power spectra of the wind-induced response of a large-span roof structure, and the accuracy of spectral estimation for stochastic signals is verified. The numerical results indicate that the proposed approach is efficient and accurate with high spectral resolution, so it is applicable for power spectral computation of various response signals of structures induced by the wind. Moreover, the background and the resonant response time histories are separated successfully using the proposed approach, which is sufficiently proved by detailed verifications. Therefore, the proposed approach is a powerful tool for the verification of the existing frequency-domain formulations.

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • 제19권2호
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

고차통계 기법과 웨이브렛을 이용한 수중 천이신호 탐지 (Underwater Transient Signal Detection Using Higher-order Statistics and Wavelet Analysis)

  • 조환래;오선택;오택환;나정열
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.670-679
    • /
    • 2003
  • 본 논문에서는 수중 천이신호 탐지를 위하여 시간주파수 영역에서 신호분석이 가능한 웨이브렛을 적용하였다. 낮은 신호대 잡음비를 가지는 관측신호로부터 천이신호를 탐지하기 위하여 고차통계 기법과 웨이브렛을 사용하였으며, 웨이브렛을 이용하여 신호를 주파수 영역에서 분해한 다음 고차통계 기법을 이용하여 분해된 웨이브렛 계수들의 정규분포 특성을 측정하였다. 제안한 방법으로 천이신호를 탐지할 경우 낮은 신호대 잡음비를 가지는 관측 신호로부터 천이신호를 잘 탐지할 수 있었다.

Multi-stage structural damage diagnosis method based on "energy-damage" theory

  • Yi, Ting-Hua;Li, Hong-Nan;Sun, Hong-Min
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.345-361
    • /
    • 2013
  • Locating and assessing the severity of damage in large or complex structures is one of the most challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) has the ability to clearly reflect the damage characteristics of structural response signals and the artificial neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by using the WPT and ANN based on "energy-damage" theory, in which, the wavelet packet component energies are first extracted to be damage sensitive feature and then adopted as input into an improved back propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate that the method herein is computationally efficient and is able to detect the existence of different damage patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in the loss of stiffness on braces or the removal bracing in various combinations.

Sparse Kernel Independent Component Analysis for Blind Source Separation

  • Khan, Asif;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.121-125
    • /
    • 2008
  • We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

다해상도 신호해석 방법을 이용한 음성개선 (Speech Enhancement Using Multiresolutional Signal Analysis Methods)

  • 석종원;한미경;배건성
    • 전자공학회논문지S
    • /
    • 제36S권7호
    • /
    • pp.134-135
    • /
    • 1999
  • 본 논문에서는 최근에 널리 연구되고 잇는 다해상도 신호해석 방법인 웨이브렛 변환, 웨이브렛 패킷, 그리고 코사인 패킷 알고리듬을 잡음음성의 음질개선에 이용하여 각각의 성능을 비교하였으며, 또한 이를 기존의 스펙트럼 차감법의 성능과 비교 분석하였다. 성능비교의 척도로는 SNR과 켑스트럼 거리를 이용하였다. 실험결과 SNR면에서는 코사인 패킷이 가장 좋은 결과를 보였고 켑스트럼 거리의 경우 코사인 패킷과 웨이브렛 패킷이 훨씬 나은 결과를 보였다. 주관적인 청취결과 역시 코사인 패킷이 가장 좋은 결과를 보였으며, 기존의 스펙트럼 차감법은 musical noise의 영향으로 인해 상대적으로 다른 방식에 비해 합성음의 음질이 많이 떨어짐을 확인할 수 있었다.

  • PDF

Performance analysis of WPM-based transmission with equalization-aware bit loading

  • Buddhacharya, Sarbagya;Saengudomlert, Poompat
    • ETRI Journal
    • /
    • 제41권2호
    • /
    • pp.184-196
    • /
    • 2019
  • Wavelet packet modulation (WPM) is a multicarrier modulation (MCM) technique that has emerged as a potential alternative to the widely used orthogonal frequency-division multiplexing (OFDM) method. Because WPM has overlapped symbols, equalization cannot rely on the use of the cyclic prefix (CP), which is used in OFDM. This study applies linear minimum mean-square error (MMSE) equalization in the time domain instead of in the frequency domain to achieve low computational complexity. With a modest equalizer filter length, the imperfection of MMSE equalization results in subcarrier attenuation and noise amplification, which are considered in the development of a bit-loading algorithm. Analytical expressions for the bit error rate (BER) performance are derived and validated using simulation results. A performance evaluation is carried out in different test scenarios as per Recommendation ITU-R M.1225. Numerical results show that WPM with equalization-aware bit loading outperforms OFDM with bit loading. Because previous comparisons between WPM and OFDM did not include bit loading, the results obtained provide additional evidence of the benefits of WPM over OFDM.

정상 웨이블릿 변환을 이용한 항공기 FBG 센서의 변형률 탐지 정확도 향상 (Improvement of Strain Detection Accuracy of Aircraft FBG Sensors Using Stationary Wavelet Transform)

  • 손영준;신현성;홍교영
    • 한국항행학회논문지
    • /
    • 제23권4호
    • /
    • pp.273-280
    • /
    • 2019
  • 구조 건전성 모니터링 기술을 이용하여 항공기의 유지 보수 비용을 줄이고 항공기의 가동률을 높이고자 하는 많은 연구가 진행되고 있다. 이에 FBG 센서에 대한 많은 연구가 함께 진행되고 있다. 하지만 복합재 내부에 FBG 센서를 설치할 경우, 복합재 층 사이에 보이드(void)가 발생하게 되고 이로 인해 신호 갈라짐 (split problem)이 발생하게 된다. 또한, FBG 센서는 전자기파에 영향을 받지 않지만, 후속처리 과정에서 사용되는 전자장비에 의한 전자기파 잡음이 발생하게 된다. 본 논문에서는 이러한 잡음으로 인한 오차를 줄이기 위해 이동 불변의 특성을 지니고 비선형적인 신호분석에 효율적인 정상 웨이블릿 변환 기법을 제시하였다. 그리고 위의 상황에서 웨이블릿 패킷 변환과 비교하였을 경우 정상 웨이블릿 변환의 잡음 제거 성능이 더 우수한 것을 확인하였다.