• Title/Summary/Keyword: wavelength multiplexing

Search Result 341, Processing Time 0.025 seconds

Loadbalancing for WDM Network using Dynamic Watermarks (WDM 네트워크에서 동적 워터마크 결정을 이용한 로드벨런싱)

  • Nahm, Jung-Joo;Kim, Sung-Chun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.1-5
    • /
    • 2007
  • Wavelength-division multiplexed (WDM) networks are emerging to be the right choice for the future transport networks. In WDM networks, the optical layer provides circuit-switched lightpath services to the client layer such as IP, SONET and ATM. The set of lightpaths in the optical layer defines the virtual topology. Since the optical switches are reconfigurable, the virtual topology can be reconfigured in accordance with the changing traffic demand pattern at theclient layer in order to optimize the network performance. We present a new approach to the virtual topology reconfiguration and loadbalancing problem for wavelength-routed, optical wide-area networks under dynamic traffic demand. By utilizing the measured Internet backbone traffic characteristics, our approach follows the changes in traffic without assuming that the future traffic pattern is known. For the simulation traffic modeling, we collected the data from real backbone traffic. Experiments show that the standard deviation compared to previous technique is reduced.

Fault/Attack Management Framework for Network Survivability in Next Generation Optical Internet Backbone (차세대 광 인터넷 백본망에서 망생존성을 위한 Fault/Attack Management 프레임워크)

  • 김성운;이준원
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.67-78
    • /
    • 2003
  • As optical network technology advances and high bandwidth Internet is demanded for the exponential growth of internet traffic volumes, the Dense-Wavelength Division Multiplexing (DWDM) networks have been widely accepted as a promising approach to the Next Generation Optical Internet (NGOI) backbone networks for nation wide or global coverage. Important issues in the NGOI based on DWDM networks are the Routing and Wavelength Assignment(RWA) problem and survivability. Especially, fault/attack detection, localization and recovery schemes in All Optical Transport Network(AOTN) is one of the most important issues because a short service disruption in DWDM networks carrying extremely high data rates causes loss of vast traffic volumes. In this paper, we suggest a fault/attack management model for NGOI through analyzing fault/attack vulnerability of various optical backbone network devices and propose fault/attack recovery procedure considering Extended-LMP(Link Management Protocol) and RSVP-TE+(Resource Reservation Protocol-Traffic Engineering) as control protocols in IP/GMPLS over DWDM.

Distributed Virtual Topology Adaptation Method to Support IP Traffic in WDM Mesh Networks (WDM Mesh 네트워크에서 IP 트래픽을 수용하기 위한 분산형 가상토폴로지 적응 기법)

  • Kim, Eal-Lae;Lee, Sung-Kuen;Lee, Yong-Won;Chang, Sun-Hyok;Lee, Myung-Moon;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.1-10
    • /
    • 2007
  • We propose a new approach to accommodate bidirectional asymmetric traffic demands as well as unexpected dynamic internet traffic variation in the WDM mesh network by using optical networking technologies. In the proposed scheme, an intermediate node determines the optical path based on the switching statistics of IP router of the node which characterizes the Internet traffic variation, which in effect provides a dynamic and distributed traffic control over the network. It is expected to reduce the efficiency deterioration of RWA(Routing and Wavelength Assignment) due to the real-time variation of Internet traffic so that expandability and flexibility of the network can be enhanced. In this paper, we describe a methodology for traffic behavior analysis at a node, and the decision policy of the establishment/release of optical path. In addition, we evaluate the performance of the proposed scheme through the computer simulations.

2.5 Gbps Hybrid PON link Using RSOA Based WDM-PON and a Reach Extender (RSOA기반 WDM-PON 링크와 Reach Extender를 이용한 2.5 Gbps 하이브리드 PON 링크 기술)

  • Kim, Kwang-Ok;Lee, Jie-Hyun;Lee, Sang-Soo;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.583-591
    • /
    • 2011
  • We presents the architecture of the 2.5 Gbps hybrid PON link which can increase of the transmission distance and link capability, and split ratio by using a colorless DWDM-PON and O/E/O based reach extender into an existing G-PON link. A RSOA based DWDM-PON to apply the feeder fiber can provide a link capacity of 32 larger that of a legacy G-PON. The reach extender converts the wavelength of DWDM-PON to G-PON through GTC frame regeneration at the remote node, and can provide a burst reset signal in order to extract upstream burst signal, simultaneously. The proposed hybrid PON enable a legacy G-PON to operate over the maximum 60 km distance with a 128-way split per WDM wavelength.

Structure optimization of a L-band erbium-doped fiber amplifier for 64 optical signal channels of 50 GHz channel spacing (50 GHz 채널 간격의 64 채널 광신호 전송을 위한 L-band EDFA의 구조 최적화)

  • Choi, Bo-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1666-1671
    • /
    • 2022
  • The structure of a high-power gain-flattened long wavelength band (L-band) optical amplifier was optimized, which was implemented for 64-channel wavelength division multiplexed optical signals with a channel spacing of 50 GHz. The output characteristics of this L-band amplifier were measured and analyzed. The amplifier of the optimized two-stage amplification configuration had a flattened gain of 20 dB within 1 dB deviation between 1570 and 1600 nm for -2 dBm input power condition. The noise figure under this condition was minimized to within 6 dB in the amplification bandwidth. The gain flattening was realized by considering only the characteristics of gain medium in the amplifier without using additional optical or electrical devices. The proposed amplifier consisted of two stages of amplification stages, each of which was based on the erbium-doped fiber amplifier (EDFA) structure. The erbium-doped fiber length and pumping structures in each stage of the amplifier were optimized through experiments.

Experimental Demonstration of Holographic Demultiplexer using Volume Diffraction Grating Based on Photopolymer

  • An, Jun-Won;Kim, Nam;Lee, Kwon-Yeon;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.141-164
    • /
    • 2002
  • A 42 channel demultiplexer for dense wavelength division multiplexing(WDM) using photopoly-mer volumetric diffraction grating that has excellent optical properties and low cost capability, has been designed and optically demonstrated. From the experimental results, we have obtained the 3 dB bandwidth of 0.18 nm, crosstalk suppression of 20 dB and channel uniformity of 1.6 dB for 50 GHB channel spacing.

Comparison with Dispersion Compensation Scheme Using 10 Gbit/s × 40 Channels Wavelength Division Multiplexing Transmission over 323 km of Field Installed Non-Zero Dispersion Shift Fiber

  • Kim, Geun-Young;Park, Soo-Jin;Jeong, Ki-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.112-117
    • /
    • 2006
  • We experimentally investigated the transmission characteristics of 400 Gbit/s (10 Gbit/s ${\times}$ 40 channels) WDM signals with 100 GHz channel spacing over 323 km of installed NZ_DSF. The installed fiber has optical properties of 0.28 dB/km attenuation, 4.3 ps/nm/km dispersion, $0.083ps/nm^2/km$ dispersion slope and less than $0.05ps/km^{1/2}$ PMD coefficient. In this experiment, two cases of dispersion compensation schemes, the lumped type and the distributed type, were compared. The results implied that the distributed type dispersion compensation in which dispersion compensation devices are inserted at the end of the each span showed better transmission performance than the lumped one in which dispersion compensation devices are located at the transmitter and receiver sites. From the analysis of the experimental results, we verified that different transmission performance comes from the power penalty induced by XPM in the distributed scheme is lower than the lumped scheme case.

Study of Optical Transmission Performance in IP-over-WDM Networks Based on FSK/ASK Combined Modulation Format

  • Xiangjun, Xin;Andre, Paulo Sergio de Brito;Teixeira, Antonio Luis Jesus;Monteiro, Paulo P.;Rocha, Jose R. F. da
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • The transmission performance of optical labeling based on a combined frequency shift keying/amplitude shift keying (FSK/ASK) format is studied by numerical simulation. The simulation demonstrates that the bit-error ratio (BER) characteristic of an ASK signal is limited by the extinction ratio, received optical power, and dispersion, simultaneously. However, an FSK signal is mainly limited by the extinction ratio (ER) and received optical power when the peak spectrum, which is used to detect the FSK signal, is relatively narrow.

  • PDF

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

Equivalent Optical Bandwidth of Reflective Electro-Absorption Modulator Based Optical Source with a Broadband Seed Light for a 2.5 Gb/s and Beyond Signal Transmission

  • Kim, Chul Han
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.371-375
    • /
    • 2015
  • The impact of equivalent optical bandwidth on the performance of a system using a reflective electroabsorption modulator (R-EAM) based optical source has been experimentally evaluated with signals operating at 2.5 Gb/s and beyond. The equivalent optical bandwidth of our source with a broadband seed light was simply adjusted by using a bandwidth tunable optical filter. From the measurements, we have estimated the required equivalent optical bandwidth of our source for an error-free transmission (@ bit-error-rate of $10^{-12}$) and a forward error correction (FEC) threshold of $2{\times}10^{-4}$.