It was necessary to devise new techniques to overcome and enhance the resolution limits of traveltime tomography. Waveform inversion has been one of the methods for giving very high resolution result. High resolution image could be acquired because waveform inversion used not only phase but amplitude. But waveform inversion was much time consuming Job because forward and backward modeling was needed at each iteration step. Velocity-stress method was used for effective modeling. Resolution limits of imaging methods such as travel time inversion, acoustic and elastic waveform inversion were investigated with numerical models. it was investigated that Resolution limit of waveform inversion was similar tn resolution limit of migration derived by Schuster. Horizontal resolution limit could be improved with increased coverage by adding VSP data in cross hole that had insufficient coverage. Also, waveform inversion was applied to realistic models to evaluate applicability and using initial guess of travel time tomograms to reduce non-linearity of waveform inversion showed that the better reconstructed image could be acquired.
Ha, Wan-Soo;Pyun, Suk-Joon;Son, Woo-Hyun;Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak
Geophysics and Geophysical Exploration
/
v.11
no.3
/
pp.177-183
/
2008
The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.
Classical full waveform inversion for velocity estimation defines the objective function as the $l^2$ -norm of differences between the modeled and the observed wavefields. Although widely used, the results of this method have been less than satisfactory. A moderate improvement of this method is to define the objective function as the $l^2$ -norm of differences between the logarithms of the modeled and observed wavefields. In this paper we propose new objective functions of waveform inversion. They produce better results in sub-salt imaging than those of the classical and the logarithmic objective functions. One objective function defines the residual as the difference between $L^{th}$ power of the modeled wavefields and that of the observed wavefields. Another defines the residual as the difference between the integral of the $L^{th}$ power of the modeled wavefields and that of the observed wavefields. We apply these new objective functions to the synthetic SEG/EAGE salt model, and show that our new waveform inversion algorithms provide more accurate results than those of the classical and logarithmic waveform inversion methods.
The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.
A robust objective function in the frequency domain is applied to the acoustic full waveform inversion. The proposed objective function is defined as $l_1$-norm of residual wavefields in the frequency domain. Generally, the full waveform inversion is extremely sensitive to a number of factors such as parameterization, initial model, noise and so on. The numerical tests were performed for checking the sensitivity to attenuation and several noises. For the comparison with other objective functions, the conventional least-squares method and the logarithmic method were tested under the same condition. The synthetic data examples show that the proposed algorithm is more robust than the well-known methods.
In this study, an acoustic full-waveform inversion using Adam optimizer was proposed. The steepest descent method, which is commonly used for the optimization of seismic waveform inversion, is fast and easy to apply, but the inverse problem does not converge correctly. Various optimization methods suggested as alternative solutions require large calculation time though they were much more accurate than the steepest descent method. The Adam optimizer is widely used in deep learning for the optimization of learning model. It is considered as one of the most effective optimization method for diverse models. Thus, we proposed seismic full-waveform inversion algorithm using the Adam optimizer for fast and accurate convergence. To prove the performance of the suggested inversion algorithm, we compared the updated P-wave velocity model obtained using the Adam optimizer with the inversion results from the steepest descent method. As a result, we confirmed that the proposed algorithm can provide fast error convergence and precise inversion results.
A seismic waveform inversion for prestack seismic data based on the Gauss-Newton method is presented. The Gauss-Newton method for seismic waveform inversion was proposed in the 80s but has rarely been studied. Extensive computational and memory requirements have been principal difficulties. To overcome this, we used different sizes of grids in the inversion stage from those of grids in the wave propagation simulation, temporal windowing of the simulation and approximation of virtual sources for calculating partial derivatives, and implemented this algorithm on parallel supercomputers. We show that the Gauss-Newton method has high resolving power and convergence rate, and demonstrate potential applications to real seismic data.
In this study, we presented a reference-shot subset method for stable convergence of full waveform inversion using a cyclic-shot subsampling technique. Full waveform inversion needs repetitive modeling of wave propagation and thus its calculation time increases as the number of sources increases. In order to reduce the computation time, we can use a cyclic-shot subsampling method; however, it makes the cost function oscillate in the early stage of the inversion and causes a problem in applying the convergence criteria. We introduced a method in which the cost function is calculated using a fixed reference-shot subset while updating the model parameters using the cyclic-shot subsampling method. Through the examples of full waveform inversion using the Marmousi velocity model, we confirmed that the convergence of cost function becomes stable even under the cyclic-shot subsampling method if using a reference-shot subset.
The full-waveform inversion algorithm using normalised seismic wavefields can avoid potential inversion errors due to source estimation required in conventional full-waveform inversion methods. In this paper, we have modified the inversion scheme to install a weighted smoothness constraint for better resolution, and to implement a staged approach using normalised wavefields in order of increasing frequency instead of inverting all frequency components simultaneously. The newly developed scheme is verified by using a simple two-dimensional fault model. One of the most significant improvements is based on introducing weights in model parameters, which can be derived from integrated sensitivities. The model-parameter weighting matrix is effective in selectively relaxing the smoothness constraint and in reducing artefacts in the reconstructed image. Simultaneous multiple-frequency inversion can almost be replicated by multiple single-frequency inversions. In particular, consecutively ordered single-frequency inversion, in which lower frequencies are used first, is useful for computation efficiency.
The logarithmic objective function used in waveform inversion minimizes the logarithmic differences between the observed and modeled data. Laplace-domain waveform inversions usually adopt the logarithmic objective function and the diagonal elements of the pseudo-Hessian for optimization. In this case, we apply the Levenberg-Marquardt algorithm to prevent the diagonal elements of the pseudo-Hessian from being zero or near-zero values. In this study, we analyzed the diagonal elements of the pseudo-Hessian of the logarithmic objective function and showed that there is no zero or near-zero value in the diagonal elements of the pseudo-Hessian for acoustic waveform inversion in the Laplace domain. Accordingly, we do not need to apply the Levenberg-Marquardt algorithm when we regularize the gradient direction using the pseudo-Hessian of the logarithmic objective function. Numerical examples using synthetic and field datasets demonstrate that we can obtain inversion results without applying the Levenberg-Marquardt method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.