• 제목/요약/키워드: waveform biosignal

검색결과 4건 처리시간 0.019초

MFER 표준을 적용한 생체신호정보 공유시스템 개발 (Waveform Biosignal Interface based on International Standard MEER)

  • 조훈;김선칠
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.164-171
    • /
    • 2008
  • Recently, many of hospitals have hurried to computerize the resulting data from medical devices, in order to introduce Electric Medical Record(EMR). In terms of the linkage between medical devices and hospital information systems, however, many difficulties have arisen due to some reasons such as the variety of prescription input, the format difference of the resulting data sheet, and the interface difference between medical devices from different companies. To solve these problems, many researches on standardization of the resulting data of medical devices have been performed. In this study, the linkage between hospital information systems and resulting datum in Electrocardiogram(ECG) generating biosignal waveform was tested by applying Medical waveform Format Encoding Rules(MFER) Version 1.02, which has more advantages than existing global standard. MFER viewer, in addition, was made to display the resulting data on a screen. The MFER viewer was tested and compared to the existing Scalable Vector Graphics (SVG) Viewer. The results showed that this method is more effective in the interface the data storage and application, because of simplicity and easiness in data applications. And the results show that the MFER is convenience and effective for physician. It is considered that the role of MFER as the interface in biosignal waveform including Electrocardiogram medical devices would expand in the near future.

혈압 파형 재현을 위한 인공 대동맥 기반 모의 순환계 로봇 (Mock Circulatory Robot with Artificial Aorta for Reproduction of Blood Pressure Waveform)

  • 정재학;박용화
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.221-228
    • /
    • 2024
  • As the importance of cardiovascular health is highlighted, research on its correlation with blood pressure, the most important indicator, is being actively conducted. Therefore, extensive clinical data is essential, but the measurement of the central arterial blood pressure waveform must be performed invasively within the artery, so the quantity and quality are limited. This study suggested a mock circulatory robot and artificial aorta to reproduce the blood pressure waveform generated by the overlap of forward and reflected waves. The artificial aorta was fabricated with biomimetic silicone to mimic the physiological structure and vascular stiffness of the human. A pressurizing chamber was implemented to prevent distortion of the blood pressure waveform due to the strain-softening of biomimetic silicone. The reproduced central arterial blood pressure waveforms have similar magnitude, shape, and propagation characteristics to humans. In addition, changes in blood pressure waveform due to aging were also reproduced by replacing an artificial aorta with various stiffness. It can be expanded to construct a biosignal database and health sensor testing platform, a core technology for cardiovascular health-related research.

공유 전자의무기록을 위한 MFER과 HL7 표준 적용 (Adoption of MFER and HL7 Standard for Shared Electronic Medical Record)

  • 김화선;박춘복;홍해숙;조훈
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.501-506
    • /
    • 2008
  • Medical environments incorporate complex and integrated data networks to transfer vast amounts of patient information, such as images, waveforms, and other digital data. To assure interoperability of images, waveforms and patient data, health level seven(HL7) was developed as an international standard to facilitate the communication and storage of medical data. We also adopted medical waveform description format encoding rule(MFER) standard for encoding waveform biosignal such as ECG, EEG and so on. And, the study converted a broad domain of clinical data on patients, including MFER, into a HL7 message, and saved them in a clinical database in hospital. According to results obtained in the test environment, it was possible to acquire the same HL7 message and biosignal data as ones acquired during transmission. Through this study, we might conclude that the proposed system can be a promising model for electronic medical record system in u-healthcare environment.

u-헬스 센서 네트워크 시스템의 생체신호 압축 처리 (Application of Biosignal Data Compression for u-Health Sensor Network System)

  • 이용규;박지호;윤길원
    • 센서학회지
    • /
    • 제21권5호
    • /
    • pp.352-358
    • /
    • 2012
  • A sensor network system can be an efficient tool for healthcare telemetry for multiple users due to its power efficiency. One drawback is its limited data size. This paper proposed a real-time application of data compression/decompression method in u-Health monitoring system in order to improve the network efficiency. Our high priority was given to maintain a high quality of signal reconstruction since it is important to receive undistorted waveform. Our method consisted of down sampling coding and differential Huffman coding. Down sampling was applied based on the Nyquist-Shannon sampling theorem and signal amplitude was taken into account to increase compression rate in the differential Huffman coding. Our method was successfully tested in a ZigBee and WLAN dual network. Electrocardiogram (ECG) had an average compression ratio of 3.99 : 1 with 0.24% percentage root mean square difference (PRD). Photoplethysmogram (PPG) showed an average CR of 37.99 : 1 with 0.16% PRD. Our method produced an outstanding PRD compared to other previous reports.