• Title/Summary/Keyword: wave-overtopping

Search Result 143, Processing Time 0.024 seconds

Numerical Simulation of Water-Exchange due to Overtopped Breakwaters (월파허용방파제에 의한 해수교환 수치모의)

  • Kim, In-Ho;Lee, Jung-Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.21-30
    • /
    • 2010
  • This study presents a numerical simulation of sea water-exchange as a preliminary accessing tool of water quality in the protected shore behind a overtopped breakwater. The overtopped breakwater is taken into account for a safe swimming and beach protection. The overtopping rate is calculated by empirical models and the consequent currents, known as wave-induced currents, are calculated under the conditions of H.W.O.S.T and L.W.O.S.T. The rate of sea water exchange is used to evaluate the characteristics of sea water exchange and calculated through the simulation processes such as advective discharging through the outlets and random-walking diffusion of particles released within a basin. The numerical results show that the overtopped waves sufficiently improve the water exchange without healthless stagnation of contaminated mass and the consequent currents are not too strong for swimming.

A Study of Hydraulic Characteristics in Front of the Seawall under the Coexistence of Wave and Wind (파랑과 바람 공존장에서의 호안 전면 수리특성 검토)

  • Shim, Kyu-Tae;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.575-586
    • /
    • 2020
  • In this study, a two-dimensional hydraulic model test was conducted to examine the hydraulic phenomena that occur around the seawall when wave and wind coexist. Based on recent seawall repair and reinforcement examples, the experimental section was constructed under the condition of installing wave dissipation blocks on the safety surface of four different representative seawalls. Water level fluctuation, reflection, overtopping and wave pressure characteristics according to external force change were reviewed. It was confirmed that the top concrete shape of the seawall is the most important factor of the hydraulic characteristics that appear in front of the seawall, and the tendency is more pronounced when wind acts. Even in the case of vertical type seawall, when wind of 3 m/s~5 m/s occurs, the amount of overtopping increases to about 5%~12%. In the case of wave pressure, it was confirmed from the experimental results that the value increased from about 1.5 to 2.2 times in front of the top of concrete block. In addition, it was confirmed that when the shape of the seawall was different, the range of change in the hydraulic characteristics appeared larger. Therefore, when designing a seawall of a new shape, a more detailed review of the hydraulic characteristics should be accompanied based on these experimental results.

A Scenario for the Standard Basis of Crest Elevation Estimation along Korean Coast based on Expected Overtopping Probability (마루높이 설정(設定) 기준(基準)을 위한 기대월파확률 추정 Scenario)

  • Kweon, Hyuck Min;Kim, Gun Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.365-376
    • /
    • 2009
  • The importance of resonable treatment of tide characteristics has been shown by Kweon, et al. (2005, 2006) for the crest elevation estimation because of a big difference of tidal elevation along Korean coast. For the procedure of crest elevation design, the expected overtopping probability (EOP) was estimated by Kweon, et al. (2006). The comparisons on each sea showed that EOP was lower east, south and west sea in order. The results involved the assumption that the tide and design level wave height meet any time in a year. However, big waves mainly occur in summer or winter in Korean coast, the study focuses on the encounter probability of big waves and seasonal tide level. A theory of the encounter probability is not derived by the present study but it shows reasonable acceptability of the proposed scenario in which the expected overtopping probability could be an index for the crest elevation estimation in Korean coast. The calculation based on the scenario gives the possibility range for the crest elevation estimation which has no tendency of each sea along Korean peninsular. The range is within the expected overtopping probability of 1% in the whole coast of Korea.

Modified SBEACH Model for Predicting Erosion and Accretion in front of Seadike (수정 SBEACH 모델에 의한 호안 전면의 침퇴적 예측)

  • Han, Jae-Myong;Kim, Kyu-Han;Shin, Sung-Won;Deguchi, Ichiro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.482-488
    • /
    • 2011
  • Seadike is a coastal structure constructed in the rear region of the foreshore to maximize its usability by preventing direct effect of wave. The expected construction field is determined under the design wave and tidal condition where minor wave overtopping is anticipated. Thus, the location of seadike is generally fixed at the highest site of the surrounding area with seadike crest height controlling the permissible range of wave overtopping volume. But a lot of times, frontal sand beach of the seadike continuously deforms due to incident waves, resulting failure in maintaining its initial slope. The erosion and deposition of the seadike front cause changes in the crest height and volume of wave overtopping and decrease in the setting depth of the seadike, which endangers seadike region as a result. In this study, the relation of local scouring and setting depth of the seadike front in the run-up region is examined by using 2D hydraulic model tests and numerical simulations by modified SBEACH model. As a result, the study learned that if appropriate boundary condition is applied to the modified SBEACH model, it is possible to create practical estimations on the local scouring at the seadike foot when erosive waves flow into the region.

Recent Developments of Wave Energy Utilization in Denmark

  • Kofoed, J.P.;Frigaard, P.;Kramer, M.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.91-98
    • /
    • 2006
  • This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed by a more thorough description of three ongoing projects. These are Wave Dragon, Wave Star and Seawave Slot-cone Generator. Common for these projects are that they are being, or will soon be, tested in real sea and have benefited from the Danish Wave Energy Program. The work by the department on these projects involves substantial laboratory testing, numerical simulations and real sea prototype testing.

  • PDF