• Title/Summary/Keyword: wave-induced liquefaction

Search Result 29, Processing Time 0.022 seconds

Irregular Waves-Induced Seabed Dynamic Responses around Submerged Breakwater (불규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.177-190
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. Lee et al.(2016) studied for regular waves, and this study considered for irregular waves with the same numerical analysis method used for regular waves. Under the condition of the irregular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated and their results were compared with those of the regular wave field to evaluate the liquefaction potential on the seabed quantitatively. Although present results are based on a limited number of numerical simulations, one of the study's most important findings is that a more safe design can be obtainable when analyzing case with a regular wave condition corresponding to a significant wave of irregular wave.

Bore-induced Dynamic Responses of Revetment and Soil Foundation (단파작용에 따른 호안과 지반의 동적응답 해석)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.63-77
    • /
    • 2015
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

LIQUEFACTION OF SAND SEABED INDUCED BY WATER PRESSURE WAVE (수압변동에 의한 해저사질층의 액상화 현상연구)

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) us studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress become zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical tearment as for ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrese rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Liquefaction of Sand Seabed Induced by Water Pressure Wave (변동수압에 의한 사질 해저층의 액상화 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.125-135
    • /
    • 2002
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) is studied theoretically and experimentally. By experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquefied layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquefied depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquefied depth decrease with the increase of the coefficient.

  • PDF

An integrated model for pore pressure accumulations in marine sediment under combined wave and current loading

  • Zhang, Y.;Jeng, D.-S.;Zha, H.-Y.;Zhang, J.-S.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.387-403
    • /
    • 2016
  • In this paper, an integrated model for the wave (current)-induced seabed response is presented. The present model consists of two parts: hydrodynamic model for wave-current interactions and poro-elastic seabed model for pore accumulations. In the wave-current model, based on the fifth-order wave theory, ocean waves were generated by adding a source function into the mass conservation equation. Then, currents were simulated through imposing a steady inlet velocity on one domain and pressure outlet on the other side. In addition, both of the Reynolds-Averaged Navier-Stokers (RANS) Equations and $k-{\varepsilon}$ turbulence model would be applied in the fluid field. Once the wave pressures on the seabed calculated through the wave-current interaction model, it would be applied to be boundary conditions on the seabed model. In the seabed model, the poro-elastic theory would be imposed to simulate the seabed soil response. After comparing with the experimental data, the effect of currents on the seabed response would be examined by emphasize on the residual mechanisms of the pore pressure inside the soil. The build-up of the pore water pressure and the resulted liquefaction phenomenon will be fully investigated. A parametric study will also be conducted to examine the effects of waves and currents as well as soil properties on the pore pressure accumulation.

Regular Waves-induced Seabed Dynamic Responses around Submerged Breakwater (규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.132-145
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. In this study, to evaluate the liquefaction potential on the seabed quantitatively, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank model and the finite element elasto-plastic model. Under the condition of the regular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated.

Stiffness Comparison of Non-plastic Silt due to Bender Element and Direct Simple Shear Test (벤더엘레먼트와 단순전단시험에 의한 비소성실트의 강성 비교)

  • Song, Byungwoong;Yasuhara, Kazuya;Sakamoto, Wataru;Lee, Jeawoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Recent investigations into earthquake-induced damage have reported that liquefaction may take place on not only sands but also fine-contained soils or non-plastic silts. Although not a few study has been performed to understand the liquefaction of sands, relatively little effort has been devoted to improving our understanding of the liquefaction characteristics for non-plastic soils. Given that liquefaction strength is largely associated to shear wave velocity, bender element test as well as direct simple shear test is employed to examine the stiffness of non-plastic silt more precisely. Through the soil tests, the stiffness of non-plastic silts from the bender element tests is identified as slightly greater than that from the direct simple shear test. Further, the stiffness of non-plastic silts appears to be smaller than that of clay.

  • PDF

Development of Torsional Shear Testing System to Measure P-wave Velocity, S-wave Velocity and Pore Water Pressure Buildup on Fully and Partially Saturated Sands (포화 및 부분 포화 사질토의 Vp와 Vs 속도 및 과잉간극수압 측정을 위한 비틂전단 시험기의 개발)

  • Kim, Dong-Soo;Lee, Sei-Hyun;Choo, Yun-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.55-66
    • /
    • 2006
  • Laboratory tests have revealed that the liquefaction resistance of sands depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The velocity of compression waves(i.e. P-waves), which have been known to be influenced largely by the degree of saturation and can be measured conveniently in the field, appears as an indicator of saturation. In this paper, the Stokoe type torsional shear(TS) testing equipment is modified to saturate the specimen and measure the velocities of P-wave and S-wave and pore pressure buildup. The velocities of P-wave and S-wave for Toyoura sand from Japan is measured and compared at the various B-value (degree of saturation) which are partially saturated to fully saturated conditions. Additionally, the variation of the pore water pressure induced during undrained TS tests at the various B-value is measured and analyzed.

  • PDF

Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

  • Shen, Jianhua;Wu, Huaicheng;Zhang, Yuting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.418-428
    • /
    • 2017
  • In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII) is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.