• Title/Summary/Keyword: wave splitting

Search Result 73, Processing Time 0.018 seconds

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

Magnetic Properties and the Crystallization of Amorphous Nd-Fe-Ti-B (Nd-Fe-Ti-B 비정질 합금의 자기적 성질 연구)

  • 이승화;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.140-145
    • /
    • 1997
  • The amorphous state of $NdFe_{10.7}TiB_{0.3}$ and its nanocrystallization have been studied by X-ray diffraction, 모스바우어 spectroscopy, and a vibrating sample magnetometer (VSM), $NdFe_{10.7}TiB_{0.3}$ amorphous ribbons were fabricated by a sigle-roll melt-spinning method. The average hyperfine field $H_{hf}$(T) of the amorphous state shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.46(T/T_c)^{3/2}-0.34(T/T_c)^{5/2}$ for $T/T_c<0.7$ indicative of spin wave excitation. The quadrupole splitting just above the Curie temperature $T_c$ is 0.46 mm/s, whereas the average quadrupole shift below $T_c$ is zero. The Curie and crystallization temperatures are determined to be $T_c$=380K and $T_x=490K$, respectively, for a heating rate of 5 K/min. The occupied area of nanocrystalline phase at around 770K is about 65%. Above the Curie temperature, VSM data show magnetic moments increases again. The formation of $\alpha$-Fe is the main reason for the increasing moment as conformed with the 모스바우어 measurements.

  • PDF

A Study of the RCS Reduction by Pattern Synthesis for Singly Curved Structures (패턴 합성을 통한 단일 곡면 구조에서의 RCS 감소 기술에 관한 연구)

  • Kim, Woojoong;Seo, Hyeong Pil;Kim, Youngsub;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.366-373
    • /
    • 2013
  • This paper discusses the singly curved phased reflector for reduced RCS pattern, which has minimized RCS level at boresight with a null by phase cancelation and the lowered RCS level of main beam by splitting the main beam into multi directions. Considering the reduced level of boresight and main beam compared to the same sized reference PEC, this proposed multi-beam reflector can be adopted in the mono-static radar and the bi-static radar environment. The proposed reflector is a multi-beam reflector, which has different phase distributions at each row for different steering angle. It is designed through an intermediate stage of a single and dual-beam reflector. The behaviors of the designed reflectors are verified through full-wave simulation and experiment. The reflectors are designed in the frequency of 10 GHz and it has a size $240{\times}180mm^2$($8{\times}6\;{\lambda}^2$) with the curvature k=3.3. From the measured results, the proposed reflectors reduce the reflected power by 17 dB at boresight.