• Title/Summary/Keyword: wave power generator

Search Result 176, Processing Time 0.033 seconds

Study on Electrical Linear Generator Containing Heaving Buoy and Its Applications (부이 내장형 선형발전기 및 그 응용 연구)

  • Cha, Kyungho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.25-31
    • /
    • 2013
  • This paper describes an electrical linear generator (IntELG) based on permanent magnets, containing heaving buoy, and its applications for the floating wave energy converters riding in parallel waves. The permanent magnets are integrated with the heaving buoy as a component and the integrated component is configured within the cylindrical IntELG to be filled with fluid. Thus, the IntELG can effectively be applied for the power-take-off of the floating wave energy converter riding in parallel waves. Typical applications are exampled with the Pelamis and Anaconda and they are investigated for the diversely redundant power source of nuclear power plant and the cooperation with submerged tunnel(s).

A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator (수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션)

  • Park, Yong-Kun;Lim, Chae Gyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.68-75
    • /
    • 2017
  • This paper presents the experimental and theoretical results of the dynamic responses of a pendular energy extractor in a two-dimensional wave channel. By adopting a wave maker with varying wave height and period, the dynamic responses of the pendular buoy were experimentally obtained. Furthermore, with the aid of the co-simulation of moving particle analysis and rigid dynamic analysis, the dynamic responses of the pendular system were evaluated. In order to validate the feasibility of the proposed wave power generator, the force tuning of the pendular system with restoring energy was carried out. The results provide proof of concept data for the development and design of a commercial model for horizontal wave power generators in the shoreline area.

Design of Single/Multiband Impulse Generator Using SRD for UWB(Ultra Wideband) Technique (SRD를 이용한 UWB 기술용 단일/멀티밴드 Impulse Generator의 설계)

  • Kim, Ki Nam;Kim, Ihn Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, an impulse generator for UWB(Ultra Wide-band) technique with great possibility to be adopted as a next generation indoor WLAN(Wireless Local Area Network) has been designed by using SRD(Step Recovery Diode). Design goal is to design an impulse generator with simple structure, low cost, small size, and high performance. The impulse generator satisfied by FCC's regulation ( frequency range: 3.1~10.6 GHz, limit of power level: -41.25 dBm ) has been simulated by using ADS(Advanced Design System) which is the trade name of the Agilent Technologies. The output power of the impulse generator has been explained separately for single and multi band purposes, respectively.

  • PDF

The Output Power Control in the Sea-Wave Input Generation System by the Secondary Excited System (이차여자시스템에 의한 파력발전시스템의 출력제어)

  • 김문환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1013-1018
    • /
    • 2003
  • This paper deals with the secondary excited induction generator applied to random energy input generation system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled inverter connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this paper, the input torque simulator, which generate the statistically varied wave power input torque in the laboratory to drive the secondary excited induction generator, are constructed. The experimental and numerical results show the advantage of secondary excited induction generator system for the random input wave generation system.

Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy (선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계)

  • Kim, Jeong Rok;Bae, Yoon Hyeok;Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • Design procedure of WEC (wave energy converter) using the heaving motion of a floating cylinder-type buoy coupled with LEG (linear electric generator) system is introduced. It is seen that the maximum power can actually be obtained at the optimal conditions ($c_{PTO}=b_T$, ${\omega}={\omega}_N$). Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO (power take off), which includes the intentional mismatching with the heave natural frequency, which is 15% higher value than the peak frequency of input velocity spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the corresponding draft as well as the required PTO damping value is significantly reduced, which is a big advantage in manufacturing the WEC with practical LEG (linear electric generator) system.

Vector Control for Wave Power Generation System using Permanent Magnet Linear Synchronous Generator (파력발전용 선형발전시스템의 벡터제어)

  • Park, Joon Sung;Hyon, Byong Jo;Yun, Junbo;Lee, Ju;Choi, Jang-Young;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • This paper describes power generation from sea waves by using linear permanent magnet generator. A buoy is placed on the ocean surface and connected to the generator. The wave energy is carried out from the movement of a buoy. An electrical conversion system is needed between the generator and the grid. For an analysis of the power system, the modeling of the linear generator and converter system was proceeded. This paper proposes vector control method for wave power generation system using linear generator. In order to verify the proposed method, simulation and experiment performed and the results support the validity of the control scheme.

Experimental Study for the Resonance Effect of the Power Buoy Amplitude (공진형 전력부이의 상하변위증폭 효과에 관한 실험적 연구)

  • Kweon, Hyuck-Min;Koh, Hyeok-Jun;Kim, Jung-Rok;Choi, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, laboratory experiments and numerical simulations were conducted to test the performance of resonance power buoy system proposed by Kweon et al.(2010). The system is composed of a linear generator and a mooring buoy. The mover of the linear generator mainly has heave motion driven by vertical oscillation of the buoy. In this system, the velocity discrepancy between the mover and the buoy makes electricity. However, ocean wave energy as a natural resource around Korean peninsula is comparatively small and the driving force for producing electricity is not enough for commercialization. Therefore, it is necessary that the buoy motion be amplified by using resonance characteristics. In order to verify the resonance effects on the test power buoy, the experimental investigations were conducted in the large wave flume (length of 110 m, width of 8 m, maximum depth of 6 m) equipped with regular and random plunger wave generator. The resonance draft of test power buoy is designed for the corresponding period of incident wave, 1.96 sec. Regular wave test results show that the heave response amplitude operator(RAO) by a test buoy has the amplification of 5.66 times higher compared to the wave amplitude at the resonance period. Test results of random waves show that the buoy has the largest spectrum area of 20.73 times higher at the point of not the resonance period but the shorter one of 1.85 sec. Therefore this study suggests the resonance power buoy for wave power generation for commercial application in the case of the coastal and oceanic area with smaller wave energy.

Electrical Technologies for Grid Integration of Ocean Wave Power into the UK National Grid

  • Ahmed, Tarek
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.320-327
    • /
    • 2010
  • In this paper, multiple offshore wave energy converters with different output characteristics are connected to one power distribution substation. The connection between the power take-off of the different wave energy converters and the electrical power transmission system is presented in order to investigate whether multiple wave energy converters can augment energy yield and improve network integration capabilities. Moreover, the model of an array of wave energy converters is developed with the goal of analyzing the effects of the offshore wave farm on the electrical network to which it is connected. It is also developed to ensure that the electricity generated by the array is sufficiently controllable, and of a quality that can be integrate into the electricity supply network without unduly increasing the cost of connection, production or delivery.

Study of PD Location in Generators by PD Pulses Propagation

  • Cheng, Yang-Chun;Li, Cheng-Rong;Wang, Wei
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.252-256
    • /
    • 2006
  • When a partial discharge takes place at the stator of a generator, the electrical pulse will propagate along the stator bars and the capacitor chains formed by the end part of the stator winds. On the first path, the pulse propagates as a travel wave at slow speed. On the second path, the pulse propagates at quick speed. Based on the data of the experiments on a real 50 MW steam generator, the author has found the pulses can propagate by magnetic field of the stator winding. It was studied that how to locating the partial discharge by signals coming from the different paths, including the features of signals on the two paths at time domain and frequency domain, the measurement frequency rang of the signals, the blind area, the advantage and disadvantage of this method.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.