• Title/Summary/Keyword: wave power

Search Result 2,732, Processing Time 0.038 seconds

Numerical Study on Shape Optimization of a Heaving Hemisphere Wave Energy Converter (상하 운동 반구형 파력 발전기의 최적 형상 조건 수치해석)

  • Kim, Sung-Jae;Koo, Weoncheol;Heo, Kyung-Uk;Heo, Sanghwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.254-262
    • /
    • 2015
  • Parametric study on submerged body shape of an oscillating hemisphere point absorber was conducted to predict the optimal relation between radius and draft of the body. As an additional damping due to power takeoff system, the optimal damping same as wave radiation damping was applied to the PTO system to produce the maximum wave power. Body response spectrum and power spectrum were obtained for various peak frequencies on wave spectra. It was found that the maximum power can be generated when the peak frequency of available wave power was 20% greater than that of wave spectrum.

A Study of Starting Current High Power Electron Beam Production (대 전력 전자빔 발생 초기 전류에 대한 연구)

  • Kim, Won-Sop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.268-271
    • /
    • 2006
  • We have studied the backward wave oscillator, a power-pulsed generator oscillator at 20 GHz has higher frequency then current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density.

  • PDF

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.

The Study of Overtopping Wave Energy Converter Control and Monitoring System

  • Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1012-1016
    • /
    • 2009
  • This paper describes the control and monitoring system for OWEC (Overtopping Wave Energy Converter) which shows the characteristic of power stabilization in overtopping wave energy converter system. Overtopping waves generates different water pressure and the turbine is rotated by this pressure. As a result, overtopping wave energy converter is able to convert wave energy into electricity. Small size of overtopping wave energy converter is developed to simulate the control monitoring system which is able to control power generation and also monitor the system condition. The result shows the reduction of fluctuation from the overtopping wave energy system by the developed control monitoring system. In addition, the DB(Data Base) of test results are contributed to the research and development for OWEC.

Frequency Tuning Characteristics of a THz-wave Parametric Oscillator

  • Li, Zhongyang;Bing, Pibin;Xu, Degang;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Frequency tuning characteristics of a THz-wave by varying phase-matching angle and pump wavelength in a noncollinear phase-matching THz-wave parametric oscillator (TPO) are analyzed. A novel scheme to realize the tuning of a THz-wave by moving the cavity mirror forwards and backwards is proposed in a noncollinear phase-matching TPO. The parametric gain coefficients of the THz-wave in a $LiNbO_3$ crystal are explored under different working temperatures. The relationship between the poling period of periodically poled $LiNbO_3$ (PPLN) and the THz-wave frequency under the condition of a quasi-phase-matching configuration is deduced. Such analyses have an impact on the experiments of the TPO.

Numerical study on supercavitating flow in free stream with regular waves

  • Li, Da;Lyu, Xujian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.799-809
    • /
    • 2020
  • In this study, the supercavitating flow of a high-velocity moving body near air-water surface is calculated and analyzed based on a commercial CFD software ANSYS Fluent. The effect of regular wave parameters including both wave height and wavelength on the cavitating flow and force characteristics of a body at different velocities is investigated. It is found that the cavity shape, lift coefficient and drag coefficient of the body vary periodically with wave fluctuation, and the variation period is basically consistent with wave period. When the wavelength is much greater than the cavity length, the effect of wave on supercavitation is the alternating effect of axial compression and radial compression. However, when the wavelength varies around the cavity length, the cavity often crosses two adjacent troughs and is compressed periodically by the two wave troughs. With the variation of wavelength, the average area of cavity shows a different trend with the change of wave height.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

A Study on the ESS Integration Plan with Inner PCS of Wave-Offshore Hybrid Generation System for Maximizing Power Profile Stability (복합발전의 공급전력 안정성 극대화를 위한 파력발전 PCS의 BESS 연동방안 연구)

  • Jung, Seungmin;Kim, Hyun-Wook;Yoo, Yeuntae;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.82-91
    • /
    • 2014
  • The combined generator system by integrating several renewable energy sources can share the electrical infrastructure and therefore have the advantage of constructing not only the transmission system but also the power conversion system. Among the various combined renewable system, the wind power and wave power has a high possibility of future growth due to the economic feasibility in offshore environment. This kind of large-scale combined systems might be follow the determination by the transmission system operator's directions and control the output profile by focusing at PCC. However, both renewable energies are depend on the unpredictable environmental variation; it is needed to do the compensation devices. In this paper, the ESS compensation plan is proposed to do output determination of the combined generator system by paying attention to active power of utility grid with the analysis of the controllable elements of the wind and wave power generator. The improvement of the new application technique of the combined system is confirmed through using the PSCAD/EMTDC. The entire simulation process was designed by adopting the active power control according to the reference signal of TSO.

Wound-rotor induction generator system for random wave input power

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this paper, the two-axis theory is adopted to analyze the secondary excited induction generator applied to random wave input generation system. The analysis by the two-axis theory helps to know the transmitted power of the induction machine. The electric variables, like as primary and secondary currents, voltages, and electric output power, were able to express as equations. These equations are help to simulate the generation system numerical model and to know the transient state of the system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled VSI connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this method, the input torque simulator in the laboratory to drive the secondary excited results show the advantage of secondary excited induction generator system for the random input wave generation system.

Numerical calculation and experiment of a heaving-buoy wave energy converter with a latching control

  • Kim, Jeongrok;Cho, Il-Hyoung;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Latching control was applied to a Wave Energy Converter (WEC) buoy with direct linear electric Power Take-Off (PTO) systems oscillating in heave direction in waves. The equation of the motion of the WEC buoy in the time-domain is characterized by the wave exciting, hydrostatic, radiation forces and by several damping forces (PTO, brake, and viscous). By applying numerical schemes, such as the semi-analytical and Newmark ${\beta}$ methods, the time series of the heave motion and velocity, and the corresponding extracted power may be obtained. The numerical prediction with the latching control is in accordance with the experimental results from the systematic 1:10-model test in a wave tank at Seoul National University. It was found that the extraction of wave energy may be improved by applying latching control to the WEC, which particularly affects waves longer than the resonant period.