• 제목/요약/키워드: wave plate

검색결과 855건 처리시간 0.031초

Wave propagation in a generalized thermo elastic circular plate immersed in fluid

  • Selvamani, R.;Ponnusamy, P.
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.827-842
    • /
    • 2013
  • In this paper, the wave propagation in generalized thermo elastic plate immersed in fluid is studied based on the Lord-Shulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and fluid are obtained by the perfect-slip boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency, phase velocity and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the fluid interaction.

Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory

  • Hao-Xuan Ding;Hai-Bo Liu;Gui-Lin She;Fei Wu
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.207-215
    • /
    • 2023
  • This paper investigates wave propagation in functionally graded carbon nano-reinforced composite (FG-CNTRC) plates under the influence of temperature based on Reddy' plate model. The material properties of Carbon Nanotubes (CNTs) are size-dependent, and the volume fraction of CNTs varies only along the thickness direction of the plate for different CNTs reinforcement modes. In addition, the material properties of CNTs can vary for different temperature parameters. By solving the eigenvalue problem, analytical dispersion relations can be derived for CNTRC plates. The partial differential equations for the system are derived from Lagrange's principle and higher order shear deformation theory is used to obtain the wave equations for the CNTRC plate. Numerical analyses show that the wave propagation properties in the CNTRC plate are related to the volume fraction parameters of the CNTRC plate and the distribution pattern of the CNTs in the polymer matrix. The effects of different volume fractions of CNTs and the distribution pattern of carbon nanotubes along the cross section (UD-O-X plate) are discussed in detail.

관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구 (The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

효과적인 강자성체 평판구조물 검사를 위한 전 방향 전단파 자기변형 패치 트랜스듀서 개발 (Development of an omni-directional shear-horizontal wave magnetostrictive patch transducer for the effective inspection of a ferromagnetic plate)

  • 승홍민;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.548-549
    • /
    • 2014
  • Omni-directional shear-horizontal magnetostrictive patch transducers have a disadvantage that magnetic flux leakage into the plate when it is installed on a ferromagnetic plate. The leakage produces poor transduction efficiency and unwanted wave mode excitation which should be avoided in guided wave inspections of large plate-like structures. In order to resolve these problems, we newly developed a method to reduce the leakage into the plate. In the method, the patch and the magnet are vertically lifted off and their optimal positions are determined by numerical simulations. Also, the verification of the developed method is successfully verified by experiments.

  • PDF

유한한 내부 구조물이 결합된 실린더의 파동해석 (Wave Analysis of cylinders with finite internal structures)

  • 정병규;홍진숙;유정수;정의봉;신구균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.957-959
    • /
    • 2014
  • The wave analysis of cylinders combined rigidly with a finite plate to identify the effect of the plate on the wave propagation. This paper uses the mobility and impedance coupling method to combine a infinite-length cylinder with the plate, and obtains the coupling forces induced by the vibration of the structure. The waveguide finite element method is used to calculate the wave characteristics of the cylinder excited by the forces. From the results, the dispersion diagram can be obtained. It contains the characteristics induced by the vibration and length of the internal plate. It also shows the wave propagation of elastic waves sustained in the cylinder.

  • PDF

평판에 충돌하는 펄스파에 미치는 관출구 부분폐쇄의 영향 (The Effect of Partial Closure of the Duct Exit on the Impulsive Wave Impinging upon a Flat Plate)

  • 신현동;이영기;김희동;뢰호구준명
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1595-1600
    • /
    • 2004
  • When a shock wave arrives at a duct, an impulsive wave is discharged from the duct exit and causes serious noise and vibration problems. In the current study, the characteristics of the impulsive wave discharged from a partial closed duct exit is numerically investigated using a CFD method. The Yee-Roe- Davis's total variation diminishing(TVD) scheme is used to solve the axisymmetric, unsteady, compressible Euler equations. With several partial closed duct exits, the Mach number of the incident shock wave $M_s$ and the distance L/D between the duct exit and a flat plate are varied in the range of $M_s$ = 1.01 ${\sim}$ 1.50 and L/D = 1.0 ${\sim}$ 4.0, respectively. The results obtained show that the magnitude of the impulsive wave impinging upon the flat plate strongly depends upon $M_s$, L/D and the partial closure of duct exit. The impulsive wave on the flat plate can be considerably alleviated by the partial closure of duct exit and, thus, the present method can be a passive control for the impulsive wave.

  • PDF

횡 방향으로 운동하는 투과성 진자판을 이용한 파랑에너지 차단과 추출 (Block and Extraction of Wave Energy Using a Rolling Porous Pendulum Plate)

  • 조일형
    • 한국해안·해양공학회논문집
    • /
    • 제30권4호
    • /
    • pp.180-190
    • /
    • 2018
  • 파랑 중 횡 방향으로 운동하는 투과성 진자판을 파랑에너지를 차단과 추출을 동시에 하는 복합 시스템으로 활용하는 기초 연구를 수행하였다. Porter and Evans(1995)가 제안한 Galerkin 방법을 사용하여 투과성 진자판에 대한 회절과 방사 문제를 풀어 반사율과 투과율, 운동변위, 그리고 추출파워를 구하였다. Galerkin 방법은 고유함수전개법 보다 수렴성이 좋기 때문에 짧은 계산시간에도 불구하고 정확한 해를 주었다. 투과성 진자판이 불투과성 진자판 보다 파랑에너지 추출과 차단 측면에서 모두 효과적이라고 말할 수는 없지만 파랑 하중을 줄일 수 있고 해수 교환이 가능하다는 장점은 지니고 있다.

Ultrasonic Estimation and FE Analysis of Elastic Modulus of Kelvin Foam

  • Kim, Nohyu;Yang, Seungyong
    • 비파괴검사학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2016
  • The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

보강재의 운동으로 인한 보강판의 연성진동 (Coupled Vibration of Stiffened Plates due to Motion of Stiffeners)

  • 이현엽
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.153-159
    • /
    • 1997
  • In a stiffened plate reinforced on one of its sides by beam type stiffeners, the asymmetry about the plate mid-plane induces coupling between flexural wave and longitudinal wave. In this research interactions between flexural and longitudinal wave motion are analyzed in a stiffened plate which is reinforced only in one direction. The plate is modelled as a beam to which offset spring-mounted masses are attached at regular intervals. Propagation constants of the coupled waves and corresponding characteristic waves are derived by using periodic structure theory, and a computer code is developed. Also, sample calculations are carried out and the results are discussed.

  • PDF

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.