• Title/Summary/Keyword: wave front sensor

Search Result 16, Processing Time 0.031 seconds

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

A Wrist Watch-type Cardiovascular Monitoring System using Concurrent ECG and APW Measurement

  • Lee, Kwonjoon;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.702-712
    • /
    • 2016
  • A wrist watch type wearable cardiovascular monitoring device is proposed for continuous and convenient monitoring of the patient's cardiovascular system. For comprehensive monitoring of the patient's cardiovascular system, the concurrent electrocardiogram (ECG) and arterial pulse wave (APW) sensor front-end are fabricated in $0.18{\mu}m$ CMOS technology. The ECG sensor frontend achieves 84.6-dB CMRR and $2.3-{\mu}Vrms$-input referred noise with $30-{\mu}W$ power consumption. The APW sensor front-end achieves $3.2-V/{\Omega}$ sensitivity with accurate bio-impedance measurement lesser than 1% error, consuming only $984-{\mu}W$. The ECG and APW sensor front-end is combined with power management unit, micro controller unit (MCU), display and Bluetooth transceiver so that concurrently measured ECG and APW can be transmitted into smartphone, showing patient's cardiovascular state in real time. In order to verify operation of the cardiovascular monitoring system, cardiovascular indicator is extracted from the healthy volunteer. As a result, 5.74 m/second-pulse wave velocity (PWV), 79.1 beats/minute-heart rate (HR) and positive slope of b-d peak-accelerated arterial pulse wave (AAPW) are achieved, showing the volunteer's healthy cardiovascular state.

Alignment method of the secondary mirror of high resolution electro-optical payload using collimator and wave front sensor (콜리메이터와 파면측정기를 이용한 고해상도 전자광학 탑재체의 제2 반사경 정렬법)

  • Jang, Hong-Sul;Jung, Dae-Jun;Youk, Young-Chun;Kim, Seong-Hui;Ko, Dai-Ho;Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.101-104
    • /
    • 2011
  • For high resolution electro-optical payload, the alignment and assembly of the secondary mirror with respect to the primary mirror is the most important step of the whole camera assembly process. For the purpose of the secondary mirror alignment, Wave front sensor and Collimator would rather be useful than the interferometer because of its small size and easiness of handling. In this paper the brief alignment procedure and method of the secondary mirror of a high resolution electro-optical camera system was introduced.

Hybrid Atmospheric Compensation in Free-Space Optical Communication

  • Wang, Tingting;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Since the direct-gradient (DG) method uses the Shack-Hartmann wave front sensor (SH-WFS), based on the phase-conjugation principle, for atmospheric compensation in free-space optical (FSO) communication, it cannot effectively correct high-order aberrations. While the stochastic parallel gradient descent (SPGD) can compensate the distorted wave front, it requires more calculations, which is sometimes undesirable for an FSO system. A hybrid compensation (HC) method is proposed by properly using the DG method and SPGD algorithm to improve the performance of FSO communication. Simulations show that this method can well compensate wave-front aberrations and upgrade the coupling efficiency with few computations, preferable correction results, and rapid convergence rate.

AE Source Location by the Discrimination of Wave Propagation Paths in Cylindrical Vessels (실린더형 용기에서의 신호전파경로 비교를 이용한 음향방출 위치표정)

  • Yoon, D.J.;Kim, Y.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.84-90
    • /
    • 1990
  • By discriminating the wave propagation paths in cylindrical vessels, a technique for AE source location has been proposed. This method is based on the path difference between several propagating directions from a source to a sensor. One sensor can receive multiple waveforms sequentially including a direct arrival and several others propagated through the circumferential direction. An wave front normally propagates in all directions and as many waveforms can reach the sensor until the signal faded out by attenuation. Only the first four arrivals suffice the condition for calculating the source location. The proposed method was examined for an actual cylindrical vessel by the source location experiment using simulated AE sources. The test showed very promising results and the method can be utilized for a simple AE source location without multi-channel instruments.

  • PDF

Development of Millimeter wave Radar Front-end for Automobile (차량용 밀리파 레이더 프론트엔드의 개발)

  • Shin, Cheon-Woo;Lee, Kyu-Han;Park, Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.53-56
    • /
    • 2001
  • This paper has been developed a millimeter-wave radar to prevent car collision. This system needs to progress the problem as follows; (1) Increase of traffic accidents causing damage and injuries due to the increased number of motor vehicles and long distance driving, (2) Need for a device to help drivers who are in trouble due to bad weather conditions. (3) Need for a millimeter-wave radar as obstacles which need to be detected are small. This system is composited with some major technologies, Narrow beams to recognize obstacles or other objects, One-side circuit technology to prevent interference between electric waves, and Parts designed for radar products which are able to transmit millimeter - waves. The system has a various a application Field, Car distance auto-control system, prevent bump collision due to unexpected stoppage of the front car or careless driving, obstacle warning system, Car following system, and industrial and military purposes system. We have a looking forward to propose to develop field tests under various road conditions and hybrid car sensor by combining with other sensors

  • PDF

Illumination Control in Visible Light Communication Using Manchester Code with Sync-Mark Signal

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.149-155
    • /
    • 2020
  • In this study, we employed Manchester code for illumination control and flicker prevention of the light-emitting diode (LED) used in a visible light communication (VLC) system. In the VLC transmitter, the duty factor of the Manchester code was utilized for illumination control; in the VLC receiver, the spike signal from an RC-high pass filter was utilized to recover the transmitted signal whilst suppressing the 120-Hz noise arising from adjacent lighting lamps. Instead of the clock being transmitted in a separate channel, a syncmark signal was transmitted in front of each data byte and used as the reference time for transforming the Manchester code to non-return-to-zero (NRZ) data in the receiver. In experiments, the LED illumination was controlled in the range of approximately 12-84% of the constant wave (CW) light via changing of the duty factor from 10% to 90%. This scheme is useful for constructing indoor wireless sensor networks using LED light that is flicker-free and presents capability for illumination control.

Realization of Readout Circuit Through Integrator to Average MCT Photodetector Signals of Noncontact Chemical Agent Detector (비접촉 화학작용제 검출기의 MCT 광검출기를 위한 적분기 기반의 리드아웃 회로 구현)

  • Park, Jae-Hyoun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • A readout circuit for a mercury-cadmium-telluride (MCT)-amplified mid-wave infrared (IR) photodetector was realized and applied to noncontact chemical agent detectors based on a quantum cascade laser (QCL). The QCL emitted 250 times for each wavelength in 0.2-㎛ steps from 8 to 12 ㎛ with a frequency of 100 kHz and duty ratio of 10%. Because of the nonconstant QCL emission power during on-duty, averaging the photodetector signals is essential. Averaging can be performed in digital back-end processing through a high-speed analog-to-digital converter (ADC) or in analog front-end processing through an integrator circuit. In addition, it should be considered that the 250 IR data points should be completely transferred to a PC during each wavelength tuning period of the QCL. To average and minimize the IR data, we designed a readout circuit using the analog front-end processing method. The proposed readout circuit consisted of a switched-capacitor integrator, voltage level shifter, relatively low-speed analog-to-digital converter, and micro-control unit. We confirmed that the MCT photodetector signal according to the QCL source can be accurately read and transferred to the PC without omissions.

Investigation of Outer Flow Noise Reduction of the Hydrophones Embedded in the Elastomer (탄성층에 삽입된 음향 하이드로폰의 외부 유입소음 영향 연구)

  • Park, Ji-hye;Lee, Jong-kil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.273-286
    • /
    • 2008
  • Underwater acoustic sensor array can detect acoustic signal in underwater and the sensor array can be mounted in each left, right or front side of the UUV(Unmanned Underwater Vehicle). The sensor array could be conformal array and effected turbulent boundary layer flow noise. Therefore, in this paper numerical simulations were performed to know the how the outer flow noise affect the hydrophone which embedded in the elastomer. Corcos wall pressure model was used as turbulent boundary layer flow noise and this model was applied to the frequency density function. Characteristics of transfer function according the kx wave number were simulated and design parameters were thickness of elastomer, density, and modulus of elasticity. Based on the simulation results when increasing the thickness of elastomer noise reduction was increased. This results can be applied to the design of conformal array of UUV.

Propagation Characteristics of Ultra High Frequency Partial Discharge Signals in Power Transformer (전력용변압기에서 UHF 부분방전 신호의 전파 특성)

  • Yoon, Jin-Yul;Han, Ki-Son;Ju, Hyung-Jun;Goo, Sun-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.798-803
    • /
    • 2010
  • This paper describes the characteristics of electromagnetic wave propagation in power transformer. A transformer which is similar to 154 kV single phase on-site transformer unit was provided for the purpose of the experiment. The 12 dielectric windows on the transformer enclosure to install UHF (ultra high frequency) sensors and the full scale mock ups of winding and the core were also equipped in the transformer. Every sensors to be installed to the transformer was tested and verified whether they show same characteristics or not before the experiment. A discharge gap which was used as a PD (partial discharge) source moved to several necessary locations in the transformer to simulate dielectric defects. Propagation times of electromagnetic wave signal from PD source to sensors decided by the routes of both reflection phenomenon and diffraction phenomenon were compared each other. The experimental results showed propagation route of the PD signal makes an effect on the frequency spectrum of front part of the signal and the magnitude of the signal and propagation time of the signal when the signal is captured on the sensor.