• Title/Summary/Keyword: wave diffraction

Search Result 478, Processing Time 0.02 seconds

Distortion Compensation of Reconstructed Hologram Image in Digital Holographic Display Based on Viewing Window

  • Park, Minsik;Kim, Hyun-Eui;Choo, Hyon-Gon;Kim, Jinwoong;Park, Cheong Hee
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.480-492
    • /
    • 2017
  • A holographic display based on a viewing window enables the converging of a reconstruction wave into a viewing window by means of an optical system. Accordingly, a user can observe a reconstructed hologram image, even with a small diffraction angle. It is very difficult to manufacture an optical system with no aberrations; thus, it is inevitable that a certain amount of wave aberrations will exist. A viewing-window-based holographic display, therefore, always includes distortions in an image reconstructed from a hologram pattern. Compensating the distortions of a reconstructed image is a very important technical issue because it can dramatically improve the performance when reconstructing a digital three-dimensional content image from a hologram pattern. We therefore propose a method for suppressing image distortion by measuring and compensating the wave aberration calculated from a Zernike polynomial, which can represent arbitrary wave aberrations. Through our experimental configuration using only numerical calculations, our proposed method decreased the reconstructed image distortion by more than 28%.

Influence of water content on dynamic mechanical properties of coal

  • Gu, Helong;Tao, Ming;Wang, Jingxiao;Jiang, Haibo;Li, Qiyue;Wang, Wen
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • Water affects the mechanical properties of coal and stress wave propagation. To comprehensively investigate the effect of water content on the properties of coal, laboratory tests including X-Ray Diffraction (XRD) analysis, P-wave test, S-wave test, static and dynamic compression test with different water contents were conducted. The compressive strength, elastic modulus and failure strain and their mechanism of coal specimen under coupled static-dynamic load with the increased water content were observed. Meanwhile, energy transmission and dissipation characteristics of a stress wave in coal specimens with different water contents under dynamic load and its relation with the failure features, such as fragmentation and fractal dimension, of coal was analyzed. Furthermore, the dynamic interpretation of water infusion to prevent coal burst based on water infusion model of coal seam roadway was provided.

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • JO HYO-JAE;GOO JA-SAM;CHOI HAN-SUK;PARK JU-YONG;OH TAE-WON;KIM BYUNG-WOO;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.16-21
    • /
    • 2004
  • This study presents the wave forces for spar platforms. The advantage of a spar platform is that it is easy to manufacture and has excellent to motion characteristics. It is important to precisely determine the wave force acting on spar platforms for their basic design of them. We measur the wave exciting force for both the classic spar and truss spar models, and accomplish the numerical calculation using diffraction theory. The results show that experimental values have good agreement with theoretical values. However it is difficult to accurately estimate the value considering the heave plate of truss spar due to the viscosity.

An Experimental Study for the Wave Exciting Force of a Truss Spar (Truss Spar의 파강제력에 대한 실험적 연구)

  • Jo, Hyo-Jae;Goo, Ja-Sam;Oh, Tae-Won;Kim, Byung-Won;Ha, Mun-Keun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.261-266
    • /
    • 2002
  • This study presents the wave forces for spar platforms. The advantage of spar platform is that it is easy to manufacture and excellency to motion characteristics. It is important to estimate exactly wave force acting spar platforms for basic design of them. We measured the wave exciting force for classic spar and truss spar model, and accomplished the numerical calculation using diffraction theory. The results show that experimental values are good agreement with theoretical values. But it is difficult to estimate accurate value considering the heave plate of truss spar due to the viscosity.

  • PDF

Phase-shifting diffraction grating interferometer for testing concave mirrors (오목 거울 측정용 위상천이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2003
  • We present a novel concept of a phase-shifting diffraction-grating interferometer, which is intended for the optical testing of concave mirrors with high precision. The interferometer is configured with a single reflective diffraction grating, which performs multiple functions of beam splitting, beam recombination, and phase shifting. The reference and test wave fronts are generated by means of reflective diffraction at the focal plane of a microscope objective with large numerical aperture, which allows testing fast mirrors with low f-numbers. The fiber-optic confocal design is adopted for the microscope objective to focus a converging beam on the diffractive grating, which greatly reduces the alignment error between the focusing optics and the diffraction grating. Translating the grating provides phase shifting, which allows measurement of the figure errors of the test mirror to nanometer accuracy.

Diffraction Efficiency Analysis of Silver Halide Film for Color Holography Recording

  • Park, Sung Chul;Kim, Sang Il;Son, Kwang Chul;Kwon, Soon Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.16-27
    • /
    • 2015
  • Holography technology which was developed by Dennis Gabor (1900~1979) in 1948 is a technology to record wave planes of actual 3D objects. It is known as the only technology which can express 3D information most perfectly close to human-friendly. Holography technology is widely used in advertisement, architecture and arts as well as science technology areas. Especially, digital holographic print which is an applied area is greatly used in military map, architecture map and cultural asset restoration by printing and reproducing 3D information. Holography is realized by recording and reproducing the amplitude and phase information on high resolution film using coherent light like laser. Recording materials for digital holographic printer are silver halide, photoresist and photopolymer. Because the materials have different diffraction efficiency according to film characteristics of each manufacturer, appropriate guide lines should be suggested through efficiency analysis of each film. This paper suggests appropriate guide lines through the diffraction efficiency measurement of silver halide which is a holographic printer recording medium. And the objective of this study is to suggest appropriate guide lines through diffraction efficiency analysis of Ultimate 08-C and PFG-03C which are commercially used. The experiment was prepared by self-diffraction efficiency system which measures the strength with the defector by penetrating RGB recording medium and concentrating diffracted beams through collimating lens. The experiment showed Geola's PFG-03C which is a silver halide for full color has price/performance advantage in optical hologram recording, but recording angles and reproduction angles are irregular for digital holographic printer recording. Ultimate's Ultimate08-C for full color shows its diffraction efficiency is relatively stable and high according to recording angles and laser wavelength.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Nonlinear Diffraction of Incident Waves with Side-band Disturbances by a Thin Wedge (변조된 입사파의 쐐기에 의한 산란)

  • 지원식;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The nonlinear forward diffraction of a modulated wave train by a thin wedge has been studied analytically. Since the physical variables involved in the problem have vastly different scales, the multiple scale expansion method has been used to obtain an approximate solution. To simplify the problem. the wedge is assumed to be thin and the parabolic approximation is utilized. The wave evolution can be described by a kind of the cubic Schrodinger equation. which consists of the linear time evolution. the lateral dispersion and the nonlinearity. Numerical results indicate that the nonlinearity. which it defined by the ratio of the ratio of the incident wave to the wedge angle. governs the amplitude and the stability of diffracted waves. The instability of dirffracted waves becomes more pronounced as the nonlinearity increases and the modulation ratio decreases. It is also found that the stem waves. initially developed along the wedge. can not sustain for a long time.

  • PDF

Propagation Characteristics of Ultra High Frequency Partial Discharge Signals in Power Transformer (전력용변압기에서 UHF 부분방전 신호의 전파 특성)

  • Yoon, Jin-Yul;Han, Ki-Son;Ju, Hyung-Jun;Goo, Sun-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.798-803
    • /
    • 2010
  • This paper describes the characteristics of electromagnetic wave propagation in power transformer. A transformer which is similar to 154 kV single phase on-site transformer unit was provided for the purpose of the experiment. The 12 dielectric windows on the transformer enclosure to install UHF (ultra high frequency) sensors and the full scale mock ups of winding and the core were also equipped in the transformer. Every sensors to be installed to the transformer was tested and verified whether they show same characteristics or not before the experiment. A discharge gap which was used as a PD (partial discharge) source moved to several necessary locations in the transformer to simulate dielectric defects. Propagation times of electromagnetic wave signal from PD source to sensors decided by the routes of both reflection phenomenon and diffraction phenomenon were compared each other. The experimental results showed propagation route of the PD signal makes an effect on the frequency spectrum of front part of the signal and the magnitude of the signal and propagation time of the signal when the signal is captured on the sensor.

Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave (규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석)

  • Park, Il-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.