• Title/Summary/Keyword: wave chamber

Search Result 356, Processing Time 0.032 seconds

Broad-Band Design of Ferrite One-body EM Wave Absorbers for an Anechoic Chamber

  • Kim, Dong-Il;Son, June-Young;Park, Woo-Keun;Park, Dong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2004
  • With the progress of the electronics industry and radio communication technology, certain problems, such as electromagnetic interference(EMI), have arisen due to the increased use of electromagnetic(EM) waves. International organizations such as CISPR, FCC, and ANSI have provided the standards for the EM wave environment and for the countermeasure of the electromagnetic compatibility(EMC). EM wave absorbers are used for constructing an anechoic chamber to test and measure EMI and electromagnetic susceptibility(EMS). In this paper, we have designed an one-body EM(electromagnetic) wave ferrite absorber, based on the equivalent material constants method for both normally and obliquely incident waves, whose absorption abilities are superior to that of the conventional ones. The fabricated absorber has a thickness of 27.68 mm and shows an absorption ability over 20 ㏈ in the frequency from 30 MHz to 6 ㎓.

A Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 이창우;김동일;김하근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.408-413
    • /
    • 1998
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 600 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber will be designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 11 m and with the frequency band from 30 MHz to 6000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention TV ghost, etc.

  • PDF

Experiments of Wave Heights in front of a Perforated Wall under Obliquely Incident Waves:Monochromatic Wave Conditions (경사입사파 조건에서 유공벽 전면의 파고분포에 대한 실험:규칙파 조건)

  • Lee, Jong In;Kim, Young Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.301-312
    • /
    • 2012
  • This study investigates the wave height distributions in front of a perforated wall generated by obliquely incident monochromatic waves through laboratory experiments conducted in a wave basin. Attention is paid to the difference or similarity between a plain wall and a perforated wall. And the investigation is focused on the chamber width and side wall effects of a perforated wall on the propagation characteristics of waves. The main results of this study show that the normalized wave height along a perforated wall is a significant difference compare to a plain wall cases. The side wall in the chamber suppresses the growth of the stem waves.

Comparison of the Net Inflow Rates of Seawater Exchange Breakwater of Different Shapes (해수교환방파제의 형상별 순유입유량 특성 비교)

  • Lee, Dal-Soo;Lee, Chang-Hoon;Oh, Young-Min;Chun, In-Sik;Kim, Chang-Il
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.393-397
    • /
    • 2003
  • The seawater exchange breakwaters can be effectively employed to conserve or enhance the water quality inside harbors by transmitting the exterior water into the harbor. In the present study, three shapes of the breakwater, that is, the flow conduit embedded type, the wave chamber type and the oscillating water channel type are compared far their water exchanging capability through regular wave experiments. The results show that the net influx of water appears differently depending on wave period for each breakwater type. The net influx of the wave chamber type is much greater than that of the flow conduit embedded type. It is also ascertained that the influx of the oscillating water channel type can be greatly enhanced by attaining the resonance condition inside the channel at the wave periods frequently occurring at the fields where the breakwaters are to be installed.

Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber (전파무향실용 페라이트 전파흡수체의 설계)

  • 김동일;이창우;김하근;전상엽;정세모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve the above requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer. Therefore, an air layer is formed absorber between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 450 MHz in frequency band, far narrower than the aimed bandwidth. The purpose of this paper is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention of TV ghost, etc. Accordingly, in this paper, a broadened electromagnetic wave absorber is designed, which has the reflection characteristics less than -20 dB from 30 MHz to 5,430 or 8,000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 23.5 m in three-layed type and with the frequency band from 30 MHz to 5,430-8,000 MHz under the above tolerance limits.

  • PDF

Effect of Number and Condition of Reflection Site on Pulse Wave (반사 지점의 개수와 조건이 맥파에 미치는 영향)

  • Lee, Min-Woo;Jang, Min;Shin, Sang-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • To develop cardiovascular simulator capable of implementing pulse waves similar to the human body, accurate information about reflection wave is required. However, the conclusion is still not clear and various discussions are underway. In this study, the pulse wave velocity of the tube used in the experiment was first determined by measuring the pressure waves at two points in a single tube system with the experimental device to implement the pulse wave transmission of blood vessels, and the superposition time and characteristics of the reflection wave were confirmed. After that, an air chamber was set at the reflection site, and the effect of the change of air volume on the reflection wave was investigated. Finally, the effect of the number of branches connected to a single tube on the reflection wave was investigated. The superposition time of the reflection wave can be controlled by the air volume of the air chamber, and the magnitude of the reflection wave is influenced by the number of reflection sites that generate the reflection wave. The results of this study may be of practical assistance to simulator researchers who want to implement pulse wave similar to clinical data. It is expected that the more results similar to clinical are provided, the greater the scope of the simulator's contribution to clinical cardiovascular research.

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

Experimental Study on the Characteristics of Pressure Fluctuation in the Combustion Chamber with Branch Tube (분기관을 가진 연소 챔버 내 압력변동 특성에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.552-558
    • /
    • 2009
  • An experimental study using the combustor with branch tube was conducted in order to model the industry combustor with FGR (flue gas recirculation) system and to study a thermo-acoustic instability generated by a branch tube. The branch tube is a structure used to modify a system geometry and then to change its pressure field, and the thermo-acoustic instability, usually occurs in a confined geometry, can result in serious problems on industrial combustors. Thus understanding of the instability created by modifying geometry of combustor is necessary to design and operate combustor with FGR system. Pressure fluctuation in the combustion chamber was observed according to diameter and length of branch and it was compared with the solution of 1-D wave equation. It was found that branch tube affects the pressure field in the combustion chamber, and the pressure fluctuation in the combustion chamber was reduced to almost zero when phase difference between an incipient wave in the combustion chamber and a reflected wave in the branch tube is $\pi$ at the branch point. Also, the reduction of pressure fluctuation is irrespective of the installed height of branch tube if it is below $h^*=0.9$ in the close-open tube and open-open tube.

Numerical Investigation on the Applicability of Wave-Induced Swirl Water Chamber for Wave Power Generation in Coastal Water of Korea (파력발전을 위한 파유기 회전수류 유수실의 국내 연안 적용 가능성에 대한 수치해석적 조사)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.32-42
    • /
    • 2013
  • In this paper, a wave-induced swirl water chamber (SWC) for breakwater and wave power generation is introduced and its applicability to wave power generation in the coastal waters of Korea is investigated. The SWC type of wave power generation is a way to drive a turbine using the unidirectional swirl flow that is induced in the back of a curtain wall of a breakwater due to incident waves. The typical wave characteristics are obtained by analyzing the annual statistical wave data from KHOA (Korea Hydrographic and Oceanographic Administration). A numerical analysis is carried out on the variations in the SWC entrance height, wave height, and different installation conditions. For the numerical analysis, a commercial code, Fluent based on FVM, is used. As the entrance height decreases, the mass flow rate through the entrance is rarely changed, whereas the magnitude of the flow velocity of the smaller entrance height is greater than the other ones, which is better for the formation of an SWC swirl flow inside and the flow kinetic energy at the entrance. In cases of installation conditions where a wall is place behind and under SWC, it has been shown that the mass flow rate through the entrance is greater than that in the open condition, and sufficient flow kinetic energy is generated in the entrance for wave power generation. However, the swirl flow kinetic energy is relatively small. Thus, in the future, it is necessary to study the swirl flow generation, which is affected by the SWC shape.

Oscillating Flow Field Analysis as Shape of Air Chamber in OWC-type Wave Energy Conversion (OWC형 파력발전장치 공기실 형상에 따른 왕복유동장 해석)

  • Moon, Jae-Seung;Hong, Key-Yong;Shin, Seung-Ho;Hyun, Beom-Soo;Ryu, Hywang-Jin;Park, Soon-Jong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.39-44
    • /
    • 2006
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the internal oscillating flow and effect of shape of air chamber and duct at setting place of turbine by numerical analysis using commercial CFD code, FLUENT. Air chamber and duct in OWC-type wave energy conversion are adopting sudden expanded and contracted form for high-efficiency. So, whole oscillating flow from OWC-type chamber to outlet duct through duct was solved by steady and unsteady analysis in order that flow efficiency of air chamber and duct was made better.

  • PDF