• Title/Summary/Keyword: wave by wave analysis method

Search Result 1,764, Processing Time 0.042 seconds

Desing and Analysis of Weather/Wave Observation Network for the Coastal Zone (연안해역의 기상${\cdot}$파랑관측망 설계 및 해석기술의 구축 - 해양파랑관측자료의 해석방법 -)

  • Ryu Cheong-Ro;KIM Hee-Joon;SHON Byung-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.16-30
    • /
    • 1997
  • Application of digital filter to the wave analysis is studied using the observed data by wave gauge. Sea wave data obtained from wave gauge always include long wave frequency components. In order to estimate the sea wave parameters, we must re-analyzed wave data by using a digital filter and the concept of mean sea level correction method. By the wave by wave analysis and spectral methods, sea wave parameters on the basis of wave data obtained by the conventional method and digital filter are compared. The best-fitted design filter determined by the necessary conditions of frequency responses, can be obtained by calculating various transfer functions. Thus, to get the best the digital filter design, both Butterworth filter and Savitzky-Golay filter of digital filter are used in the frequency and time domain, respectively. Three cases of observation wave data are calculated by applying digital filter. The components of different frequency bands in the surf zone are coexisted in three cases. The wave data for wind wave components is computed using the digital filter the surf zone and off-surf zone, and based on the filtered data, wave parameters are calculated by the spectral analysis and wave by wave analysis methods, respectively. As a results, when sea wave data observed by wave gauge are analyzed, the Savitzky-Golay method is recommended which can well appear cut-off frequency by experimental choosing filter length in the time domain. The better mean sea level correction method is the Butterworth filter in the frequency domain.

  • PDF

Estimation of Wave Power in Korean Coastal Waters (파랑에너지 해석 및 가용량 평가 연구)

  • 김현주;최학선;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

Systematic Approach for Predicting Irregular Wave Transformation (불규칙파랑의 계통적 취급수법)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • It can be assumed that the ocean waves consist of many independent pure sinusoidal components which progress in arbitrary directions. To analyze irregular sea waves, both the spectrum method and the individual wave method have been used. The spectral approach is valid in the region where the water depth is deep and the linear property of velocity distribution is predominent, while the individual wave analysis method in the region where the water depth is shallow and the wave nonlinearity is significant. Therefore, to investigate the irregular wave transformation from the deep water to the shallow water region, it is necessary to relate the frequency spectrum which is estimated by the spectrum analysis method to the i oint probability distribution of wave height, period and direction affected by the boundary condition of the individual wave analysis method. It also becomes important to define the region where both methods can be applied. This study is a part of investigation to establish a systematic approach for analyzing the irregular wave transformation. The region where the spectral approach can be applied is discussed by earring out the experiments on the irregular wave transformation in the two-dimensional wave tank together with the numerical simulation. The applicability of the individual wave analysis method for predicting irregular wave transformation including wave shoaling and breaking and the relation between frequency spectrum and joint probability distribution of wave height and period are also investigated through the laboratory experiment and numerical simualtion.

  • PDF

Characteristics on the Variation of Ocean Wave Statistics in the Chujeon Sea (주전해역의 파랑의 통계적 변동 특성)

  • 손병규;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.20-27
    • /
    • 2001
  • After using the filtering method, wave parameters are calculated by the spectral analysis and wave by wave analysis. Extreme environments and higher wave characteristics int he Chujeon Sea are analyzed using the observed wave data. Higher wave has been intensely emphasized as an important environmental force parameter in several recent research works. The aims of this study are to summarize the distribution of extreme environment for wind waves, and to find occurrence probability of higher wave in Chujeon Sea. Ocean wave statistics varying with sea state are found to respond linearly to the spectral peakedness parameter Qp, mean run-length and Ursell number. Although the spreading of the field results is large, it may be concluded that the tendency of wave group formation depends on the spectral peakedness parameter Qp. Extreme wave is estimated to apply various model distribution functions by using the monthly maximum significant wave parameters which can be used to the design and analysis of coastal structures.

  • PDF

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Analysis of Wave Pressure of Irregular Waves in front of a Breakwater (방파제 전면부에서의 불규칙파의 파압해석)

  • Woo Jong Hyub;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1073-1077
    • /
    • 2005
  • In this study, wave pressure is calculated by using irregular waves in front of a breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-{\varepsilon}$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. The results of two cases present that wave pressure change due to irregular wave similar to wave height of irregular wave. It is observed that wave pressure of Case 2 more bigger than wave pressure of Case 1 at the same position.

  • PDF

Study on Shear Wave Velocity of Fill Dam Core zone using Surface Wave Method (표면파탐사에 의한 필댐 코어죤의 전단파속도 연구)

  • Kwon, Hyek-Kee;Shin, Eun-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.209-218
    • /
    • 2009
  • In this study, properties of shear wave velocity of core zone in filldams are analyzed. Shear wave velocity is derived using analysis of surface wave method that can be used nondestructively on the surface of filldams. These values are acquired through the tests for the core zone of six filldams by SASW and HWAW methods. Existing 2 more results are added. Shear wave velocity according to the depth and confining pressure are estimated, respectively. These analytical results are compared with the frequently used empirical method by Sawada and Takahashi.

  • PDF

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

Numerical Analysis of Wave Transformation of Permeable Breakwater Permitting Wave Overtopping (월파를 허용하는 투과성 방파제의 파랑변형에 관한 수치해석)

  • 김도삼;이광호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • In the past, ports have been mainly developed in natural harbors but nowadays ports are built wherever they can be economically justified. Therefore, construction of breakwater in area that establishment of structure is disadvantageous is risen according to the change of conditions to the location for ports. In case of building gravity breakwater in such point, need that plane shapes of more reasonable section permitting wave overtopping is necessary. One of the earliest methods for solving unsteady incompressible flow including free surfaces is the MAC(Marker And Cell) method by Harlow and Welch (1965). Recently. VOF(Volume Of Fluid) method to improve several drawbacks of MAC method is suggested by Hirt and Nichols(1981) and utilized extensively in fields of hydrodynamics. Wave overtopping phenomenon is simulated including wave breaking for permeable breakwater by numerical analysis and investigated features of wave overtopping behind structure using VOF method.

Extreme and Freak Wave Characteristics in the Coastal Writers of Korean Peninsula (한국 연안의 극히 파랑환경과 Freak Wave의 특성에 관한 연구)

  • 류청로;윤홍주
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.235-243
    • /
    • 1993
  • Extreme environments and freak wave characteristics in the coastal waters of Korean Peninsula are analyzed using the observed wave data. Freak wave has been intensely emphasized as an important environmental force parameter in several recent research works. However, the mechanism and occurrence probability of freak wave are not clarified. The aims of this study we: to summarize the distribution of extreme environment for wind waves, and to find occurrence probability of freak wave in the coastal waters of Korean Peninsula. These extreme sea conditions are discussed by applying extreme value analysis method, and the statistic characteristics are summarized which can be used to the design and analysis of coastal structures. The mechanism and the occurrence probability of freak wave are also discussed in detail using wave parameters in considered with wave deformation in the coastal waters. Key Words : extreme wave, freak wave, extreme analysis, design wave, probability density.

  • PDF