• Title/Summary/Keyword: wave attenuation

Search Result 471, Processing Time 0.028 seconds

Rayleigh waves in orthotropic magneto-thermoelastic media under three GN-theories

  • Parveen Lata;Himanshi
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.211-226
    • /
    • 2023
  • The present work is considered to study the two-dimensional problem in an orthotropic magneto-thermoelastic media and examined the effect of thermal phase-lags and GN-theories on Rayleigh waves in the light of fractional order theory with combined effect of rotation and hall current. The boundary conditions are used to derive the secular equations of Rayleigh waves. The wave properties such as phase velocity, attenuation coefficient are computed numerically. The numerical simulated results are presented graphically to show the effect of phase-lags and GN-theories on the Rayleigh wave phase velocity, attenuation coefficient, stress components and temperature change. Some particular cases are also discussed in the present investigation.

Analysis of Hydraulic Characteristics According to the Cross-Section Changes in Submerged Rigid Vegetation

  • Lee, Jeongheum;Jeong, Yeon-Myeong;Kim, Jun-Seok;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.326-339
    • /
    • 2022
  • Recently, not only Korea but also the world has been suffering from problems related to coastal erosion. The hard defense method has been primarily used as a countermeasure against erosion. However, this method is expensive and has environmental implications. Hence, interest in other alternative methods, such as the eco-friendly vegetation method, is increasing. In this study, we aim to analyze the hydraulic characteristic of submerged rigid vegetation according to the cross-sectional change through a hydraulic experiment and numerical simulation. From the hydraulic experiment, the reflection coefficient, transmission coefficient, and energy dissipation coefficient were analyzed according to the density, width, and multi-row arrangement of the vegetation zone. From numerical simulations, the flow field, vorticity distribution, turbulence distribution, and wave distribution around the vegetation zone were analyzed according to the crest depth, width, density, and multi-row arrangement distance of the vegetation zone. The hydraulic experiment results suggest that the transmission coefficient decreased as the density and width of the vegetation zone increased, and the multi-row arrangement condition did not affect the hydraulic characteristics significantly. Moreover, the numerical simulations showed that as the crest depth decreased, the width and density of vegetation increased along with vorticity and turbulence intensity, resulting in increased wave height attenuation performance. Additionally, there was no significant difference in vorticity, turbulence intensity, and wave height attenuation performance based on the multi-row arrangement distance. Overall, in the case of submerged rigid vegetation, the wave energy attenuation performance increased as the density and width of the vegetation zone increased and crest depth decreased. However, the multi-row arrangement condition did not affect the wave energy attenuation performance significantly.

Attenuation of Coda Wave in the Southeastern Korea (한반도 남동부에서의 Coda파 감쇠)

  • 김성균
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In order to know the characteristics of attenuation of coda wave in the Kyungsang Sedimetary Basin, quality faclity factor for coda wave (coda Q) is estimated from the earthquake data recorded in the KIGAM local seismic network. Thesingle scattering model for coda wave generation is adopted is adopted in estimating coda Q. In the present study, coda Q(Qc)is estimated in the range of $\alpha$=1.5~3.0, where $\alpha$ denotes the normalized time to S-wave travel time and expressed in terms of frequency (f). The deduced function in the range of 1 to 25 Hz is Qc=36.8283$f^{1.15095}$ which represents the strong dependence of coda Q on frequency. It is found that the difference of Qc between U-D, N-S, and E-W components is negligible. This fact suports the back scattering therory that coda wave originates from scattered waves by randomly distributed heterogenities in the crust On the other hand, it is observed that the coda Q increases with increasing epicentral distence. This observation suggests that QC increases with depth.

  • PDF

A decoupling FEM for simulating near-field wave motion in two-phase media

  • Chen, S.L.;Liao, Z.P.;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.181-200
    • /
    • 2007
  • A decoupling technique for simulating near-field wave motions in two-phase media is introduced in this paper. First, an equivalent but direct weighted residual method is presented in this paper to solve boundary value problems more explicitly. We applied the Green's theorem for integration by parts on the equivalent integral statement of the field governing equations and then introduced the Neumann conditions directly. Using this method and considering the precision requirement in wave motion simulation, a lumped-mass FEM for two-phase media with clear physical concepts and convenient implementation is derived. Then, considering the innate attenuation character of the wave in two-phase media, an attenuation parameter is introduced into Liao's Multi-Transmitting Formula (MTF) to simulate the attenuating outgoing wave in two-phase media. At last, two numerical experiments are presented and the numerical results are compared with the analytical ones demonstrating that the lumped-mass FEM and the generalized MTF introduced in this paper have good precision.

Analysis of Parameters Affecting the Attenuation by Rain in Ka and mm-wave Bands (Ka 및 mm파 대역에서 강우감쇠에 영향을 주는 파라미터 분석)

  • 김정효;유명완;김희찬;류규태;이범선;김영수;서덕영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.242-251
    • /
    • 2000
  • Design of wireless link in Ka and mm-wave bands is critically affected by rain attenuation. In this paper, we compared and analyzed the main distributions of rain drop size to estimate the rain attenuation which can be used in domestic environment. Mie scattering theory was checked to agree with Rayleigh theory in its low frequency limit and agree with optical scattering theory in its high frequency limit. We intended to provide more specific criteria to estimate rain attenuation with a generalized approach.

  • PDF

Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping (고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구)

  • Park, Jinsoo;Jang, Taek Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.64-71
    • /
    • 2022
  • In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.

Effect of Moisture Conditions in Soils on Mode Attenuation of Guided Waves in Buried Pipes (지반의 수분 상태에 따른 매립 배관에서의 유도초음파 모드 감쇠 변화)

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae;Kim, Young-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2010
  • Recently, many techniques have been developed for the inspection of pipelines using guided waves. However, few researches have been made on the application of those techniques for buried underground pipes. Guided wave motions in the buried pipes are somewhat different from those of on-ground pipes which have traction-free (air) boundary condition on outer pipe walls and thus are strongly affected by the mechanical property of the surrounding soils. Therefore, it should be investigated the effect of soil properties on the guided wave behavior in buried pipe. On the other hand, the mechanical property of soil is largely depending on its moisture conditions nevertheless of other influential factors such as void ratio. In this study, the effect of moisture conditions in soils on mode attenuation of guided waves in the buried pipe is investigated. To this end, numerical study is performed to characterize mode attenuation behavior in buried pipes and the effective mode which is suitable for long range inspection is identified.

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

Study of Shock Tube for Wave Phenomenon in High Speed Railway Tunnel(II)-attenuation and Nonlinear Effect of Compression Waves- (고속철도 터널에서 발생하는 파동현상에 관한 충격파관의 연구(2)-압축파의 감쇠와 비선형효과-)

  • ;;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1972-1981
    • /
    • 1995
  • As a railway train enters a tunnel at high speed, a compression wave is formed in front of the train and propagates along the tunnel. The compression wave subsequently emerges from the exit of the tunnel, which causes an impulsive noise. The impulsive noise is closely related to the pressure gradient of the compression wave propagating the tunnel. In order to investigate the characteristics of the compression waves, in the present study an experiment was made using a shock tube. The results show that the strength of a compression wave decreases with the distance from the tunnel entrance and the nonlinear effect of compression wave appears to be significant if strength of the initial compression wave is greater than 7 kPa. Furthermore if the wave pattern is known, attenuation of the compression wave propagating in a tunnel can be reasonably predicted by a theoretical equation considering viscous action and heat transfer in boundary layer.

Characteristics of Coda Wave Attenuation in the Kyungsang Basin (경상분지에서의 Coda파의 감쇠특성)

  • 김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.35-40
    • /
    • 1999
  • In order to know the characteristics of attenuation of coda wave in the Kyungsang Sedimentary Basin quality factor for coda wave or coda Q is estimated from the earthquake data recorded in the KIGAM microearthquake network. The single scattering model for coda wave generation is adopted in estimating coda Q. Coda Q appears to be largely dependent on the normalized time(a) which is the ratio of elapsed time to S-wave travel time. In the present study coda Q(Qc) is estimated in the range of a=1.5-3.Q and expressed in terms of frequency(f). The deduced function in the range of 1 to 25 Hz is Qc=36.8283 f1.15095 to represent the strong dependence of coda Q on frequency. It is found that the difference of Qc between U-D N-S and E-W components is negligible, This face supports the back-scattering theory that coda were originates from scattered waves by randomly distributed heterogeneities in the crust. On the other hand it is observed that the coda Q increases with depth.

  • PDF