• Title/Summary/Keyword: watershed hydrology

Search Result 141, Processing Time 0.02 seconds

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Characteristics of Pollutant Loads according to Types of Sources for the Chungju Dam Watershed (충주댐 유역의 오염원에 따른 오염부하량 발생 특성)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • Soil and Water Assessment Tool (SWAT) model was selected as a tool for assessing the effect of pollutant sources on the total loads from the Chungju Dam upstream watershed. The model was constructed through calibration of parameters related to nitrogen (N) and phosphorus (P), which was based on the runoff and sediment modeling performed in the previous research. Using this, the spatial and temporal pollutant loadings by source type were investigated. Results of this study indicated that in most forested upstream sub-watersheds, pollutant loadings from point sources were very low, and total loadings by point and non-point sources were also insignificant. On the other hand, in #14 sub-watershed including Jecheon city, the loadings by point source were relatively considerable. For the whole watershed, non-point sources accounted for 99% of sediment, 97% of N, and 93% of P loads. And monthly non-point source loadings were concentrated on rainy summer season, while point source loadings of N and P kept nearly constant throughout the year and were high on dry winter season relative to non-point source.

Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model (HSPF 모형을 이용한 옥동천 유역의 유달율 분석)

  • Lee, Hyunji;Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Rhee, Han-pil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

Application of the Developed Pre- and Post-Processing System to Yongdamdam Watershed using PRMS Hydrological Model (수문학적 유역특성자료 자동화 추출 및 분석시스템 적용 (II) -PRMS 모형을 이용한 용담댐 유역을 대상으로-)

  • Kwon, Hyung-Joong;Hwang, Eui-Ho;Lee, Geun-Sang;Yu, Byeong-Hyeok;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2008
  • The objective of this study is to evaluate the applicability of extracted PRMS input parameters by KGIS-Hydrology over Yongdam-Dam watershed. KGIS-Hydrology is a system for automatic extraction and analysis of watershed characteristic data. Input parameters of PRMS were generated from GIS data (DEM, soil, forest type, etc.) using KGIS-Hydrology. Multi-temporal meteorological data from Jangsu station of KMA (Korea Meteorological Administration) were used for all simulation periods. Input parameters of PRMS were optimized using observed runoff data of Yongdam-Dam station (1966-2001) and validated using observed runoff data of Yongdam-Dam station (2002-2006, Yongdam-Dam watershed). The results showed that the simulated flows were much closed to the observed flows of Yongdam-Dam (2002-2006) and Donghyang (2001-2004) station by 0.49~0.83 and 0.57~0.75 model efficiencies, respectively.

  • PDF

Evaluation of Land Use Change Impact on Hydrology and Water Quality Health in Geum River Basin (금강유역의 토지이용 변화가 수문·수질 건전성에 미치는 영향 평가)

  • LEE, Ji-Wan;PARK, Jong-Yoon;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.82-96
    • /
    • 2019
  • This study evaluated the status of watershed health in Geum River Basin by SWAT (Soil and Water Assessment Tool) hydrology and water quality. The watershed healthiness from watershed hydrology and stream water quality was calculated using multivariate normal distribution from 0(poor) to 1(good). Before evaluation of watershed healthiness, the SWAT calibration for 11 years(2005~2015) of streamflow(Q) at 5 locations with 0.50~0.77 average Nash-Sutcliffe model efficiency and suspended solid (SS), total nitrogen(T-N), and total phosphorus(T-P) at 3 locations with 0.67~0.94, 0.59~0.79, and 0.61~0.79 determination coefficient($R^2$) respectively. For 24 years (1985~2008) the spatiotemporal change of watershed healthiness was analyzed with calibarted SWAT and 5 land use data of 1985, 1990, 1995, 2000, and 2008. The 2008 SWAT results showed that the surface runoff increased by 40.6%, soil moisture and baseflow decreased by 6.8% and 3.0% respectively compared to 1985 reference year. The stream water quality of SS, T-N, and T-P increased by 29.2%, 9.3%, and 16.7% respectively by land development and agricultural activity. Based on the 1985 year land use condition. the 2008 watershed healthiness of hydrology and stream water quality decreased from 1 to 0.94 and 0.69 respectively. The results of this study be able to detect changes in watershed environment due to human activity compared to past natural conditions.

Development of Web-GIS based SWAT Data Generation System (Web-GIS 기반 SWAT 자료 공급 시스템 구축)

  • Nam, Won-Ho;Choi, Jin-Yong;Hong, Eun-Mi;Kim, Hak-Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • Watershed topographical data is essential for the management for water resources and watershed management in terms of hydrology analysis. Collecting watershed topographical and meteorological data is the first step for simulating hydrological models and calculating hydrological components. This study describes a specialized Web-based Geographic Information Systems, Soil Water Assessment Tool model data generation system, which was developed to support SWAT model operation using Web-GIS capability for map browsing, online watershed delineation and topographical and meteorological data extraction. This system tested its operability extracting watershed topographical and meteorological data in real time and the extracted spatial and weather data were seamlessly imported to ArcSWAT system demonstrating its usability. The Web-GIS would be useful to users who are willing to operate SWAT models for the various watershed management purposes in terms of spatial and weather preparing.

Operation of an Experimental Watershed for River Water Quality Management (하천수질관리를 위한 시험유역의 운영)

  • Kim, Sang Ho;Choi, Hung Sik
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • We construct the hydrology-water quality monitoring system which can watch the variations of river flow and water quality in real time. We also construct the river management system through the hydrology-water quality monitoring system that can observe water quality and its variations for preparing for the accident of river pollution. The Gyecheon basin which is located at the upstream of Heoengseong dam is selected as an experimental watershed for the system construction. The real time monitoring system for getting more correct hydrological and water quality data consists of 3-rainfall gauge station, 3-water level gauge station, and 1-water quality gauge station. We intend that the data such as rainfall, water level, velocity, flow, and water quality will be collected and we try that the data may be used for practical and other purposes.

  • PDF

The Characteristics and Experimental Application of AGNPS Model for Pollution Predicting in Small Watershed (소유역 오염예측모형 AGNPS 의 특성과 실험적 적용)

  • Choi, Jin-Kyu;Lee, Myung-Woo;Son, Jae-Gwon
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 1994
  • AGNPS model is an event-based model to analyze nonpoint-source and to examine potential water quality problems from agricultural watershed. This model uses a square grid-cell system to represent the spatial variability of watershed conditions, and simulates runoff, sediment, and nutrient transport for each cell. AGNPS model was applied on Yeonwha watershed, and the test results were compared with the measured data for runoff volume, peak runoff rate, suspended solids, and phosphorus concentration. The watershed of 278.8 ha was divided into 278 cells, each of which was 1 ha in size. The coefficients of determination for runoff volume and peak flow were (0.893 and 0.801 respectively from regression of the estimated values on the measured values. The concentration of suspendid solid was increased but decreased that of phosphate with runoff volume.

  • PDF

CALIBRATION AND VALIDATION OF THE HSPF MODEL ON AN URBANIZING WATERSHED IN VIRGINIA, USA

  • Im, Sang-Jun;Brannan, Kevin-M.;Mostaghimi, Saied
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.141-154
    • /
    • 2003
  • Nonpoint source pollutants from agriculture are identified as one of the main causes of water quality degradation in the United States. The Hydrological Simulation Program-Fortran (HSPF) was used to simulate runoff, nitrogen, and sediment loads from an urbanizing watershed; the Polecat Creek watershed located in Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed hydrologic and water quality data collected at the watershed outlet and at several sub-watershed outlets. A comparison of measured and simulated monthly runoff at the outlet of the watershed resulted in a correlation coefficient of 0.94 for the calibration period and 0.74 for the validation period. The annual observed and simulated sediment loads for the calibration period were 220.9 kg/ha and 201.5 kg/ha, respectively. The differences for annual nitrate nitrogen ($NO_3$) loads between the observed and simulated values at the outlet of the watershed were 5.1% and 42.1% for the calibration and validation periods, respectively. The corresponding values for total Kjeldahl nitrogen (TKN) were 60.9% and 40.7%, respectively. Based on the simulation results, the calibrated HSPF input parameters were considered to adequately represent the Polecat Creek watershed.

  • PDF

Development of a Hybrid Watershed Model STREAM: Model Structures and Theories (복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론)

  • Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.