• Title/Summary/Keyword: water-treatment sludge

Search Result 635, Processing Time 0.025 seconds

Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process (파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거)

  • Kim, Young-Chur
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor (유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향)

  • Shin, Chang-Ha;Oh, Dae-Yang;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

Performance Estimation of SBR Aerobic Digestion Combined with Ultrasonication by Numerical Experiment (수치실험을 통한 초음파 결합형 SBR 호기성 소화의 거동 예측)

  • Kim, Sunghong;Kim, Donghan;Lee, Dongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.815-826
    • /
    • 2013
  • Using a developed mathematical model and calibrated kinetic constants, numerical experiments for a aerobic digestion of wastewater sludge by SBR aerobic digestion process combined with ultrasonication (USSBR) were performed in this study. It simulated well the phenomena of the decomposition of particulate organics and the release of organic nitrogen and transformation. To achieve 40 % of particulate organics removal, USSBR process requires only 6 days of SRT and 14 W/L of ultrasonic power whereas SBR aerobic digestion process requires 12 days of SRT. Based on the model simulation results, an empirical equation was presented here. This equation will be used to predict digestion efficiency for the given variables of SRT and ultrasonic power dose. USSBR aerobic digestion process can reduce the nitrogen concentration. The optimal operation strategy for the simultaneous removal of solids and soluble nitrogen in this process is estimated to 7 days of SRT with 14 W/L of ultrasonic power dose while anoxic period was 6 hours out of 24 hours of cycle time. In this condition, 40 % of particulate organics as well as 36 % of total nitrogen will be removed and the soluble nitrogen concentration of the centrate will be lower less then 40 mg/L.

Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR) (연속회분식 반응기를 이용한 수산물 가공폐수 처리)

  • Paik, Byeong Cheon;Shin, Hang Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 1994
  • This research investigated efficient operation mode for the successful performance of SBR(sequencing batch reactor) treating fish processing wastewater, and the effect of sodium chloride (NaCl) on treatment efficiency. 2-hour-annerobic, 6-hour-aerobic and 3-hour-anoxic operation during reaction period was found an effective operating method for organic and nitrogen removal from fish processing wastewater in SBR system. The average removal efficiencies of COD, BOD, and total nitrogen in SBR operated continuousely were 91%, 95%, and 67.1%, respectively. The estimated values of biomass yield coefficient(Y), microbial decay coefficient($K_d$), and bioreaction rate constant(K) were $0.35gMLSS/gCOD_{removed}$, $0.015day^{-1}$, and $0.209hr^{-1}$, respectively. As NaCl concentration increased from 5 to 30g/L, sludge settleability was cnhanced but organic removal in the reactor was decreased. NaCl of influent had considerable relationship with COD removal, whereas it did not significant affect nitrogen removal.

  • PDF

A Study on Color Treatment of Dyeing Wastewater with Bittern+Iron(II) chloride (간수+염화일철을 이용한 염색폐수 색도처리에 관한 연구)

  • 김만구;서명포
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 2000
  • Color removal of dyeing wastewater is becoming more important due to intensive limitation on color unit of effluent water, so this study was to investigate an efficient color removal of dyeing wastewater. We found that bittern+iron chloride(II) inorganic coagulant developed by Kabool research center is much higher than any other inorganic coagulants for color removal. Optimum pH of this coagulant was 10.5 and removed more than 90% for color removal efficiency. The results showed that COD and color unit of effluent water was average 60mg/L and 200~250 units when continuous activated sludge test after coagulation with this coagulant has done. From the results of the experiments, the application of bittern+iron chloride(II) inorganic coagulant can save the operating cost of wastewater treatment plants.

  • PDF

Treatment Characteristics of Biological Aerated Filter Process Using the Upflow and Downflow System (상향류 및 하향류 생물막여과공정의 처리특성에 관한 연구)

  • Lee, Yang-Kyoo;Kim, Gun-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.837-848
    • /
    • 2006
  • This paper presents the test results of biological aerated filtration(BAF) process to replace activated sludge process by enhancing treated effluent quality and reducing the costs. In BAF process both BOD and SS compounds in wastewater are degraded and removed by biological reaction and filtration. Upflow BAF with expanded polypropylene media and downflow BAF with ceramic media were used to investigate the effects of hydraulic and organic loads on effluent quality. As a result, in BAF processes which has different media, upflow BAF reactor shows 5% higher efficiency than downflow BAF and this phenomena caused by backwashing methods and operational conditions. The results of influence factors analyzed by Factor Analysis Method in BOD and SS treatment efficiency are the size of media, hight of media bed and type of media. The quantitative effects of media size are 5.73% in TBOD, 5.78% in SBOD and 7.65% in TSS, so we confirmed the main factor is media size.

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Comparing Night Soil Treatment Processes in Aspects of Cost and Energy Consumption (분뇨처리방법의 비용 및 에너지소비 비교)

  • Yoo, Kee Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.38-45
    • /
    • 2008
  • There are still lots of areas where combined sewer pipes are covering in Seoul. All buildings within those areas are equipping septic tanks which take part in separating solids from flushing water of chamber pots. Septic tanks legally demand emptying and cleaning the those inner bodies once a year, resulting the generation of sludge which should be purified using the specified treatment plants as one of environmental infrastructures. Previous research showed that sludge volume continuously increase putting night soil treatment facilities in shortage by 3,549kL a day in 2020, which should be prepared by newly built facilities. This study aimed to define which process is more suitable especially in the points of cost and energy consumption. It was the main results that combining treatment of sewer with night soil, in fact same as nowaday process, is the very positive way beyond the treatment of night soil's own in respects of both costs and energy consumption.

  • PDF

Removal of Arsenic in Synthesis Method and Characteristics of Fe(III)-ettringite (비소제거를 위한 Fe(III)-ettringite 합성방법 및 특성 연구)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings, because of it's carcinogenic property, the countries like United states of America and Europe have made stringent regulations which govern the concentration of arsenic in drinking water. The current study focuses on different treatment methods for removal of arsenic from waste water. Treatment method the high strength arsenic waste water is treated with Fe(III)-ettringite by co-precipitation method. Number of experiments were carried out to decide the optimal dosage of Fe(III)-ettringite to treat arsenic waste water. The Fe(III)-ettringite was synthesized by taking appropriate equivalent ratios of calcium oxide and ferric chloride in proportion to the arsenic. The best removal efficiencies of 94% were observed at a As/(Ca: Fe) ratio of 1:3. The maximum removal of arsenic was observed in pH range of 12. But as the pH increases the arsenic removal efficiency decreases as portlandite is formed in the pH above 12. The analysis of surface of precipitate conform the needle like structure of ettringite. This treatment technique has promising features such as, the chemicals required in the treatment as well as the sludge generated can be reduced. The operating pH range is in alkaline region which is advantageous over traditional treatment process which has lower pH. Also the co-precipitation not only helps in removal of arsenic but also heavy metals.

A Study on Anaerobic Sewage Treatment Using a Fluidized Bed Reactor (유동상 반응조를 이용한 하수의 혐기성 처리에 관한 연구)

  • Ye, Hyoung-Young;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.265-273
    • /
    • 2012
  • Anaerobic sewage treatment is drawing attentions due to high energy consumptions and sludge production associated with aerobic treatment. This study evaluates the treatment characteristics and energy balance of a fluidized bed reactor (FBR) for treating domestic sewage at $20^{\circ}C{\sim}25^{\circ}C$ for 245 days. Sewage fed to the FBR was a primary clarifier effluent of a domestic sewage treatment plant with COD of 99-301 mg/L and $BOD_{5}$ of 37-149 mg/L. Effluent $SBOD_{5}$ and its removal efficiency at HRT of 1~3 h were 6~15 mg/L and 73.4~85.5%, respectively, achieving high removal efficiency for soluble organic substances even at short HRTs. COD removal efficiency and its effluent concentration were 53.8~75.9% and 51~83 mg/L, respectively. The energy production potential from gaseous methane was 0.009-0.028 kWh/$m^{3}$, which satisfies the energy required for the FBR operation.