• Title/Summary/Keyword: water-treatment

Search Result 12,111, Processing Time 0.042 seconds

Use of East Deep Sea Water for the Increase of Functional Components of Ginseng (Panax ginseng C.A. Meyer) and Tomato (Lycopersicon eculentum L.) (인삼과 토마토의 기능성 성분 증진을 위한 동해 해양심층수의 이용)

  • Woo Cheon-Seok;Kang Won-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.331-335
    • /
    • 2006
  • This experiment was conducted to investigate the effect of deep sea water on fruit quality and yield of tomato. In the deep sea water treatments, fruit growth and weight were decreased as the concentration of deep sea water increased. Especially, the fresh weight of second truss was decreased significantly than first truss. Soluble solid content was increased significantly in higher concentration treatment especially at 30mM and 40mM treatment. That was increased more in the first than in the second truss fruits. Most of hexose in fruits were glucose and fructose. The reason of increased glucose and fructose contents was the decline of growth because of salinity stress by deep sea water treatment. however deep sea water treatment increased the lycopene content, especially in 20mM treatment. It is assumed that deep sea water treatment cause induction and promotion of ethylene. The higher concentration of deep sea water to the solution, the eater fruit quality improvement was noticed. However, proportional yield reduction accompanied concentration, 20mM deep sea water improved fruit quality without a significant yield reduction. The Re content was the highest among ginsenosides in all treatments. The contents total of ginsenosides in all treatments, except EC 8 treatment, was higher than those in the controlled treatment. The PT/PD value was 1.31 of the lowest in the EC 8 treatment and was 2.52 of the highest in the EC6 treatment. Rf contents in high increase was detected at all treated ginseng roots.

Perchlorate in Advanced Drinking Water Treatment Process (고도정수처리 과정에서 퍼클로레이트 이온의 농도 변화)

  • Kim, Hyun-koo;Kim, Joung-hwa;Lee, Youn-hee;Lee, Jae-ho;Kim, San
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • Perchlorate, which is still unregulated, is found in tap water, posing a threat to public health. In and out of Korea, there is no clear standard for drinking water quality or discharge. To make matters worse, Perchlorate study is in its infancy in Korea. This research tracked fresh water and purified water of water purification facility A and B located at the city of D, where Nak-dong River is being utilized as the purified water. And it was found that purified water shows no particular pattern in Perchlorate concentrations but represented a higher level of concentration compared to fresh water. With utilizing the research results, the study sought the impact of activated-carbon treatment process on Perchlorate elimination and found out that Perchlorate concentrations increased 38% after the process. The result proves that conventional water purification process can't eliminate Perchlorate. Therefore, it is reasonable that Perchlorate discharge from sources should be minimized.

Consideration on the Concentration of the Active Substances Produced by the Ballast Water Treatment System (선박평형수 처리장치의 활성물질 농도에 관한 고찰)

  • Kim, Eun-Chan;Oh, Jeong-Hwan;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • The International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Thirty-four ballast water treatment systems were granted IMO active substance basic approval, among which twenty systems were granted final approval. This paper is an in-depth consideration of the mechanism principles of the treatment systems that received active substance basic or final approval from IMO, and on the concentration of Total Residual Oxidant (TRO). The TRO maximum allowable discharge concentration was reduced by neutralization equipment, resulting with a concentration lower than 0.2 ppm. However, between various treatment systems TRO maximum allowable dosage showed large differences, ranging from 1 to 15 ppm. The discrepancies of treatment allowable dosage concentration between different treatment systems are largely due to the properties of species and water conditions such as the temperature and turbidity, rather than the characteristics of treatment systems and the type or presence of filters etc.

Water Quality and Environmental Treatment Facilities

  • Kim, Geum Soo;Chang, Young Jae;Kelleher, David S.
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.157-173
    • /
    • 2012
  • It has been argued that investment in basic treatment facilities could have both a direct improvement effect and an indirect diversion effect on water quality. The reason why the investment in basic treatment facilities could have a negative diversion effect is that the investment in treatment facilities could affect a budget-constrained regulatory agency's choice in a way that would perversely encourage the regulated firms' emissions, giving a negative result in terms of water quality. We have reviewed the Korean experience and tested if the treatment facilities have improved water quality since 1991. Using a two-stage least-squares method we have shown that building treatment facilities has contributed to improving the water quality even with consideration of the negative effect through reduced enforcement effort. The model and results draw attention to the importance of optimally balancing efforts to build wastewater treatment facilities with efforts to set and enforce regulatory standards.

  • PDF

Water Treatment Method for Removal of Trihalomethanes, Pesticides, Heavy Metals and Detergent in Drinking Water (1). -Effective Removal Method of Trihalomethanes in Drinking Water- (상수중 Trihalomethanes, 농약, 중금속 및 합성세제의 효율적인 제거를 위한 수처리 방법 제 1보. -상수중 Trihalomethanes의 효율적인 제거방법-)

  • Park, Jong-Woo;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.472-479
    • /
    • 1994
  • This study was conducted to determine the effective removal method of THMs and humic material in drinking water when the doses of oxidants, coagulants, and activated carbon, and the points of oxidants treatment were changed in the drinking water treatment process. The inhibition of THMs formation and the removal of humic matter were more effectively achieved by $ClO_2$ than by other oxidants, $Cl_2,\;NH_2Cl,\;KMnO_4\;and\;O_3$. By changing the point of oxidant treatment, the formation of THMs was reduced by about 36.7 to 8.2% on treatment after coagulation, but the content of humic matter was not affected. The coagulation efficiency of alum and ferric sulfate to coagulate organic materials in water was affected by the molecular weight of humic matter in drinking water. The treatment of activated carbon after filtration was found to be more effective than that before oxidation in inhibiting THMs formation and removing THMs.

  • PDF

Study on Adsorption of Pb and Cd in Water Using Carbonized Water Treatment Sludge (탄화 정수 슬러지를 이용한 수중의 납과 카드뮴 흡착에 관한 연구)

  • Kim, Younjung;Kim, Daeik;Choi, Jong-Ha;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.238-243
    • /
    • 2017
  • In this study, water treatment sludge carbonized with $400^{\circ}C$ was tested as an adsorbent for the removal of Pb and Cd in water. The carbonized sludge was characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and surface area analysis. Carbonized sludge exhibited much higher specific surface area and total pore volume than water treatment sludge itself. In batch-type adsorption process, carbonized sludge represented better adsorption performance for Pb than Cd, achieving 90~98% at the concentrations conducted in the experiments. Equilibrium data of adsorption were analyzed using the Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicated that carbonized water treatment sludge by heat treatment could be used as an efficient adsorbent for the removal of Pb and Cd from water.

Upgrading of the Existing Water Treatment Plant Through Improvement of Mixing Intensity of the Flocculator and Weir Loading of The Sedimentation Basin (응집(凝集) 교반(攪拌) 강도(强度) 및 담전지(沈澱池) 월류(越流) 부하열(負荷率) 개선(改善)을 통한 기존(旣存) 정수장(淨水場)의 정수처리능력(淨水處理能力) 향상(向上))

  • Choi, Gyn-Woon;Goak, Chang-Ho;Kim, Ryang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.43-52
    • /
    • 1994
  • In this paper, the unit processes in the typical water treatment plant, which need to be expanded because the water demand is over the existing water treatment capacity in the near future, were carefully examined to upgrade the water treatment plant. The models were installed in the fields as a distorted model based upon the hydraulic similitudes. The models having the constant discharge ratio in the unit processes between the model and the prototype were installed as two units to compare the treatment efficiencies. The capacity of the individual unit, which is a model of the prototype of $250,000m^3/day$ capacity, was $24m^3/day$. In the mixing and flocculation experiments, the mixing intensity of flocculators G was selected as the main experimental item. The optimal mixing intensities G, which are 65/sec for experimental discharge of $1m^3/hr$ and 85/sec for experimental discharge of $1.3m^3/hr$, are identified based upon the comparison the relative turbidity removal efficiencies. Also, the outlet weir loading was selected as the main experimental item in the sedimentation process. Through the continuous experiments with the main experimental items of the mixing intensity of flocculators G and the outlet loading of the weir in the sedimentation basin, about 20% upgrading compared to the existing water treatment capacity was obtained.

  • PDF

Effect of Water Extract of Sparasis crispa on the Expression of TNF-α, iNOS and IL-1β Genes in RAW 264.7 Cells (꽃송이버섯 추출물이 RAW 264.7 세포에서 TNF-α, iNOS, IL-1β 유전자 발현에 미치는 영향)

  • Han, Hyo-Sang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.163-171
    • /
    • 2021
  • Purpose : The purpose of this study was to examine the anti-inflammatory effects of Sparassis crispa (SC). SC is a well-known traditional herbal remedy and its mushroom is used for treatment of inflammation. Many diseases that are increasing recently have characteristics of inflammatory diseases. Researchers are finding bioactive substances from natural products that can promote treatment and prevention of inflammation. We investigated the effect of water extracted from SC on the expression of effector genes involved in the function of RAW 264.7 cells. Methods : Effects of RAW 264.7 cells on cell viability, antioxidation, and mRNA expression were examined using water extracts from SC. A 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed to determine the effect of water extracts from SC on cell viability in RAW 264.7 cells. Inflammation of RAW 264.7 cells induced by lipopolysaccharide (LPS) treatment and expression levels of inflammatory cytokine TNF-α, iNOS and IL-1β gene were analyzed using quantitative reverse transcription PCR (qRT-PCR) analysis. Results : The MTS assay was performed on RAW 264.7 cells after treatment with various concentrations of water extracts of SC. Treatment of RAW 264.7 cells with water extracts from SC and LPS at a concentration of 0.125, 0.5 mg/㎖ for twenty four hours promoted mRNA expression of TNF-α, iNOS and IL-1β. Conclusion : MTS assay was applied to RAW 264.7 cells after various concentrations of water extracts of SC. Through experimental demonstration of anti-oxidant and anti-inflammatory effects of water extracts from SC, we suggest that SC is a valuable material for the prevention and treatment of various inflammatory diseases.

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.