• Title/Summary/Keyword: water-ecosystem

Search Result 1,475, Processing Time 0.031 seconds

Analysis on Ecosystem Service Hotspots Based on Regional Environmental Stakeholders' Perception - A case study of Ansan - (지역 환경분야 이해당사자 인식을 반영한 생태계서비스 우수지역 분석 - 안산시를 대상으로 -)

  • Kim, Ilkwon;Kim, Sunghoon;Lee, Jae-Hyuck;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.417-430
    • /
    • 2018
  • Identification and mangement of ecosystem service hotspots are necessary to set environmental policies that include concepts of ecosystem service. Assessment and mapping of ecosystem service hotspot referring areas with high amount of ecosystem services provide essential information to manage ecosystem services effectively. Assessment of hotspots based on regional environmental stakeholders' perception is an useful approach to identify priority areas where management practices are required. This study estimated weights on regulating ecosystem services from regional environmental stakeholders' surveys in Ansan, and then, identified regulating service hotspots with weights. The result indicated that regulating services are, in order of importance, water quality, air quality, erosion, and climate control. The north-eastern forest of Ansan was mainly revealed as an ecosystem service hotspot. Ecosystem service hotspots were spatially distributed similarly regardless of environmental stakeholders' weights. Identification of ecosystem service hotspot with environmental stakeholders' perception can be applied in decision-support tools for ecosystem service management.

Development and Assessment of Environmental Water Seasonal Outlook Method for the Urban Area (도시지역에 대한 환경용수의 계절전망 기법 개발 및 평가)

  • So, Jae-Min;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • There are 34 mega-cities with a population of more than 10 million in the world. One of the highly populated cities in the world is Seoul in South Korea. Seoul receives $1,140million\;m^3/year$ for domestic water, $2million\;m^3/year$ for agricultural water and $6million\;m^3/year$ for industrial water from multi-purpose dams. The maintenance water used for water conservation, ecosystem protection and landscape preservation is $158million\;m^3/year$, which is supplied from natural precipitation. Recently, the use of the other water for preservation of water quality and ecosystem protection in urban areas is increasing. The objectives of this study is to develop the seasonal forecast method of environmental water in urban areas (Seoul, Daejeon, Gwangju, Busan) and to evaluate its predictability. In order to estimate the seasonal outlook information of environmental water from Land Surface Model (LSM), we used the observation weather data of Automated Synoptic Observing System (ASOS) sites, forecast and hind cast data of GloSea5. In the past 30 years (1985 ~ 2014), precipitation, natural runoff and Urban Environmental Water Index (UEI) were analyzed in the 4 urban areas. We calculated the seasonal outlook values of the UEI based on GloSea5 for 2015 year and compared it to UEI based on observed data. The seasonal outlook of UEI in urban areas presented high predictability in the spring, autumn and winter. Studies have depicted that the proposed UEI will be useful for evaluating urban environmental water and the predictability of UEI using GloSea5 forecast data is likely to be high in the order of autumn, winter, spring and summer.

TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program (태평양-인도양 해양순환 연구 프로그램)

  • Jeon, Dongchull;Kim, Eung;Shin, Chang Woong;Kim, Cheol-Ho;Kug, Jong Seong;Lee, Jae Hak;Lee, Youn-Ho;Kim, Suk Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.

Drastic Change of Phytoplankton Community at the Station 'Mankyeong Bridge' of the New Saemankeum Lake during 2006-2007 (2006-2007 기간 중 신생 새만금호 '만경대교' 정점에서 식물플랑크톤 군집 급변에 대한 연구)

  • Jang, Keon-Gang;Park, Jong-Woo;Park, Jang-Ho;Ha, Na;Yih, Won-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • Drastic changes in the water quality and phytoplankton community of the new Saemankeum Lakeduring the first decade following the construction of the Saemankeum Sea Wall has been considered to be unavoidable. Input of eutrophicated water through the Mankyeong River and Dongjin River might produce more direct effects on the water quality and phytoplankton community, which lead us to launch a long-term semi-weekly investigation at the "Mankyeong Bridge" monitoring point to resolve its short-term effect as well as long-term stabilization of the ecosystem in the new Saemankeum Lake. During 15 months starting from June 2006, the water temperature varied in accordance with the typical seasonal variations in temperate on the coasts, and no significant daily variations evoked by tidal cycle could be detected. However, there was an inverse relationship between seasonal precipitation and salinity even though the range in annual variation was drastically reduced right after the construction of the Saemankeum Sea Wall. Species richness in the phytoplankton community was also reduced due to the narrowed annual range of salinity, which would eliminate the mid-high salinity species from the Mankyeong Bridge monitoring point. Similarly, species diversity was decreased with increased dominance of the phytoplankton community after the construction. Between the two summer seasons during the present study, species diversity was higher in 2007 than in 2006, which might indicate the early stage of a gradual stabilization in the ecosystem including the phytoplankton community at the monitoring station. The phytoplankton community thus needs to be monitored on a long-term basis to identify indirect signals that can be used to assess the stability of the ecosystem in the young Saemankeum Lake.

Wetland Construction: Flood Control and Water Balance Analysis

  • Kim, Duck-Gil;Kwak, Jae-Won;Kim, Soo-Jun;Kim, Hung-Soo;Ahn, Tae-Jin;Singh, Vijay P.
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.197-205
    • /
    • 2010
  • Recent years have witnessed increasing interest in wetland constructions in Korea as a flood control measure during the flood season and for consideration of the ecology during the non-flood season. In this study, hydraulic and hydrologic analyses were performed on a wetland construction plan for use as an alternative sustainable flood defense during the flood season, as well as a wetland that can protect the ecosystem during the non-flood season. The study area was the basin of the Topyeong-cheon stream, which is a tributary of the Nakdong River, including the Upo wetland, which is registered in the Ramsar Convention and the largest inland wetland in Korea. Wetlands were to be constructed at upstream and downstream of the Upo wetland by considering and analyzing seven scenarios for their constructions to investigate the effect of flood control during the flood season; it was found the best scenario reduced the flood level by 0.56 m. To evaluate the usefulness of the constructed wetlands during the non flood season, the water balance in the wetlands was analyzed, with the best scenario found to maintain a minimum water level of 1.3 m throughout the year. Therefore, the constructed wetlands could provide an alternative measure for flood prevention as well as an ecosystem for biodiversity.

Comparative Analysis of Groundwater-Ecosystem Service Value of Protected Horticulture Complex and Paddy Fields (시설원예단지와 논의 지하수 생태계서비스 가치 비교 분석)

  • Son, Jinkwan;Choi, Deuggyu;Lee, Siyoung;Kang, Donghyun;Park, Minjung;Yun, Sungwook;Kim, Namchoon;Kong, Minjae
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.2
    • /
    • pp.47-58
    • /
    • 2018
  • Protected horticultural complexes would increase crop productivity but would adversely affect the groundwater recharge function in the area because the impervious area would increase. Further, they would limit the movement of living beings, affecting biodiversity. Therefore, this study evaluated the groundwater ecosystem services provided by protected horticultural complexes in terms of consistent utilization of water. The estimated amounts of groundwater loss obtained through quantitative assessment of groundwater infiltration showed that a higher impervious area results in higher losses. We, therefore, predict a much higher loss if similar changes in land use are realized on a nationwide scale. A plan to promote groundwater recharge in impervious areas is actively being discussed for urban areas; however, this plan is not yet applicable to farming areas. We consider it is essential to develop groundwater infiltration facilities for horticultural complexes, infiltration trenches, permeable pavements, surface water storage facilities, water purification facilities, etc. Further research and development of groundwater infiltration facilities is important for consistent utilization of water and the improvement of ecosystem services.

Fish Species Compositions and the Application of Ecological Assessment Models to Bekjae Weir, Keum-River Watershed (금강 수계 백제보에서 어류의 종 특성 평가 및 생태평가모델 적용)

  • Moon, Seong-Dae;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.731-741
    • /
    • 2015
  • The objectives of study were to evaluate fish species compositions of trophic guilds and tolerance guilds and apply ecological fish assessment (EFA) models to Bekjae Weir, Keum-River Watershed. The EFA models were Stream Index of Biological Integrity (SIBI) used frequently for running water and Lentic Ecosystem Health Assessment (LEHA) used for assessments of stagnant water. The region of Bekjae Weir as a "four major river project" was originally a lotic ecosystem before the weir construction (2010, $B_{WC}$) but became more like lentic-lotic hybrid system after the construction (2011, $A_{WC}$). In the analysis of species composition and ecological bioindicator (fish), fish species with a preference of running water showed significant decreases (p < 0.05), whereas the species with a preference of stagnant water showed significant increases (p < 0.05). After the weir construction, relative abundances of tolerant species increased, and the proportion of insectivores decreased. This phenomenon indicated the changes of biotic compositions in the system by the weir construction. Applications of SIBI and LEHA models to the system showed that the two model values decreased at the same time after the weir construction ($A_{WC}$), and the region became more like lentic-lotic hybrid system, indicating the degradation of ecosystem health. The model values of SIBI were 19 and 16, respectively, in the BWC and AWC, and the health conditions were both "C-rank". In the mean time, the LEHA model analysis showed that the values was 28 in the BWC and 24 in the AWC, thus the health was turned to be "B-Rank" in the BWC and "C-Rank" in the AWC. indicating a degradation of ecological heath after the weir construction.

Estimation of low impact development duration of estuaries at urban area (도시 유역에 위치한 하구를 구성하는 하천의 저영향 개발 기간 산정)

  • Jeong, Anchul;Lim, Jeongcheol;Kim, Songhyun;Baek, Chungyeol
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.290-297
    • /
    • 2019
  • The estuary is a transition zone where fresh water and salt water meet because the stream is connected to the open sea area. So estuaries have very high biodiversity and form a unique ecosystem. However, before the recognition of the ecological value of the estuaries, various damage and disturbances have been occurred so countermeasures are needed. The river master plan is acting as a disturbance factor. However, the river master plan has the public object such as water disaster defense, river function improvement, and national water resources management. Therefore, it is necessary to study the ways in which the opposite relationship of development and ecosystem protection coexist. In this study, the concept of environmental windows were used to estimate the low impact development duration. We expected that proposed method for low impact development duration estimation can be used as a basis and basic data to protected the ecosystem from development project and disturbance in the future.

Seasonal Changes in Micrometeological Factors of a Costal Sand Dune Grassland Ecosystem in Hakampo, Taeanhaean National Park, Korea (태안해안국립공원 학암포 해안사구 초지생태계의 미기상인자 계절변화)

  • Lee, Na-Yeon;Choi, In Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Coastal sand dune area is an important ecosystem as an ecotone which is located between coastal area and terrestrial area. In order to understand the sand dune ecosystem in terms of its habitat characteristics, micrometeorological analysis was carried out in a coastal sand dune in Hakampo, Taeanhaean National Park, Korea. Micrometeorological measurements were made to monitor air and soil temperatures, relative humidity, soil water content, rainfall, solar radiation, wind speed, and wind direction. In contrary to a forest ecosystem, the coastal sand dune grassland ecosystem was relatively hotter and very humid with heavy rainfalls concentrated between June and July. The seasonal change of daily mean soil temperature was greater than that of air temperature by $2{\sim}3^{\circ}C$. Daily mean soil water content was less than 10% throughout the year. Also, the maximum wind speed of 156.7 m $s^{-1}$ was recorded on 7 October 2011. The observed seasonal wind direction was different from those observed at Seosan by KMA (Korea Meteorological Administration). To better understand the habitat characteristics in a costal sand dune grassland ecosystem, long-term multi-year measurements are needed.

Assessment of the environmental flow and habitat of the river ecosystem through ecosystem function model (생태계 기능모의를 통한 하천의 환경유량 및 서식처 평가)

  • Na, Jong-Moon;Park, Seo-Yeon;Cho, Yean-Hwa;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.191-201
    • /
    • 2021
  • Rivers have been damaged due to rapid urbanization, and river management has been carried out focusing on flow and flood control functions. Recently, interest in river restoration, emphasizing the environmental aspects of rivers, is increasing, but the beginning of river restoration requires an appropriate evaluation of the environmental flow required for the ecosystem. This study analyzed the effects on the habitat of the river ecosystem by estimating the changes in flow regime and environmental flow following the construction of the Buhang dam in Gamcheon, the first tributary of the Nakdong River. To evaluate the environmental flow, the dominant species of Gamcheon, Zacco Platypus, and the protected species Squalidus gracilis majime, and riparian vegetation were selected, and the environmental flow was calculated using the HEC-EFM (Ecosystem Function Model). The evaluated environmental flow was linked with hydraulic analysis and GIS platform, and habitat area change and habitat connectivity analysis before and after dam construction were performed by spatial habitat analysis in the river. Based on the results of this study, it can be used as a river restoration project and a dam operation plan considering the river environment through the calculation of environmental flow and habitat connectivity analysis to improve the habitat of the river ecosystem.