• Title/Summary/Keyword: water-bottom properties

Search Result 208, Processing Time 0.035 seconds

An Experimental Study on Properties of Mortar using Bottom Ash (바텀애시를 사용한 모르터의 특성에 대한 실험적 연구)

  • 송민섭;김영덕;나철성;최경렬;김재환;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.61-65
    • /
    • 2003
  • Bottom ash among the coal ash is not used because of its poor properties. But encouraging the use of bottom ash as a construction material is a sensible method of utilization as it avoids the problems and costs associated with disposal and provides an alternative aggregate source. This study was aimed at using bottom ash as an alternative fine aggregate source to provide a solution to disposal and insufficient fine aggregate for the production of concrete. So properties of domestic bottom ash were estimated due to the difference of each domestic bottom ash. And compressive strength and durability were estimated as basic data to use bottom ash in building industries. As a result of the experiment, the very porous surface and angular shape of the bottom ash particles necessitate a higher apparent water-cement ratio. And due to the higher water requirement, the compressive strength and durability of mortar is lower than those of the control samples. But when 25 percent of the total dry weight of the natural fine aggregate was replaced by bottom ash, the engineering characteristics were similar.

  • PDF

Mechanical & Physical Properties of Flowable Fill Using Bottom Ash (폐석탄회를 사용한 저강도충전재의 물리.역학적 특성)

  • 원종필;이용수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.915-920
    • /
    • 2000
  • The effectiveness of bottom ash on the slump flow, compressive strength of flowable fill is investigated in this study. This study was undertaken on the use of bottom ash as a fine aggregate in flowable fill. Bottom ash is combined with portland cement, fly ash, and water to flowable fill with slump flow(20~30cm). Four different level of bottom ash with fly ash contents, 25%, 50%, 75%, 100% are investigated. Laboratory test results conclude that the inclusion of bottom ash increases the demand for mixing water n obtaining the require slump flow.

An Experimental Study on the Properties of Concrete using Bottom Ash according to Water-Cement Ratio (물시멘트비에 따른 바텀애시를 사용한 콘크리트의 특성에 관한 실험적 연구)

  • 이종호;김재환;김용로;강석표;최세진;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.57-60
    • /
    • 2002
  • Recently, the coal ash production has been increased by increase of consumption of electric power. So it is important to find a reclaimed place and treatment utility for treating coal ash. Accordingly, in this study we performed an experimental study to compare and analyze the Properties of concrete according to W/C and bottom ash replacement ratio. As a result of this study, it was found that the bleeding content was decreased according to decrease of W/C and increase of bottom ash replacement ratio, and the compressive strength of concrete using bottom ash was similar to plain concrete(replacement ratio 0%).

  • PDF

Physical Properties of Lightweight Materials According to the Replacement Ratios of the Admixture (혼합재 치환율에 따른 경량소재의 물리적 특성)

  • Jung, Yon-Jo;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.633-638
    • /
    • 2009
  • Lightweight materials were fabricated using glass abrasive sludge, bottom ash and slag powder in this study. This study tried to draw the correlation between physical properties and internal pore of lightweight material. The content of bottom ash and slag powder was from 10% to 50% and firing temperature from $760{^{\circ}C}\;to\;800{^{\circ}C}$ in rotary kiln. The lightweight material containing bottom ash or slag powder had a specific gravity of $0.21{\sim}0.70$ at particle size $2{\sim}4$ mm. Replacement ratio of the admixture increasing with specific gravity increased. Fracture strength of panel made with various lightweight materials was $32{\sim}55\;kgf/cm^2$ and flexural strength was $11{\sim}18\;kgf/cm^2$. Fracture strength increased by 72% and flexural strength was 63% compared with reference. Thermal conductivities of panel was $0.07{\sim}0.11W/m{\cdot}k$. The water absorption ratios of panel with lightweight materials containing bottom ash were $1.8{\sim}2.8$% and slag powder were $2.65{\sim}2.8$%. Excellent results on resistant of water absorption.

Physicochemical Properties and the Origin of Summer Bottom Cold Waters in the Korea Strait (하계 대한해협 저층냉수의 물리.화학적인 특성 및 기원)

  • Kim, Il-Nam;Lee, Tong-Sup
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.595-606
    • /
    • 2004
  • Hydrographic survey in the Korea Strait has long history that has begun in August 1917 at the Busan - Tsushima cross section, still continues to date. However, chemical properties of bottom cold water found exclusively in the western channel of the Korea Strait during summer did not receive much scientific attention. The aim of the study is to decipher the enigmatic origin of the Korea Strait Bottom Cold Water (KSBCW) in terms of chemical properties. The physicochemical properties of the KSBCW are extracted from the CREAHS II hydrographic data. OMP method was applied to analyze origin of the KSBCW quantitatively. The KSBCW is well defined by low temperature below $10^{\circ}C$. The cold waters exhibited the local presence near the coast at about 120m depth with a thickness of 20m to 30m. The cold water was characterized by relatively cold, saline and higher chemical concentrations than adjacent waters. The KSBCW seems to have different origin kom that of the coastal upwelled waters at the Ulgi-Gampo because it is saline, denser and contains considerably less dissolved oxygen than upwelled waters. The physicochemical properties are reported to have noticeable annual variations which suggest the complex origin of the KSBCW. OMP analysis show that the KSBCW is a mixture of three water types; TMW (24%), ESIW (36%) and ESPW (40%). Relationship between the KSBCW and the east Sea circulation is traced by mapping the water masses that have similar T, S and DO of KSBCW. The result showed that the KSBCW is most possibly an extension of southward flowing coastal intermediate waters. Front these results, we expect that the monitoring KSBCW will provide us valuable information about the East Sea circulation.

Engineering Properties of Lightweight Aggregate Concrete Using Dry Bottom Ash as Coarse Aggregate (건식 바텀애시 굵은골재를 사용한 경량골재 콘크리트의 공학적 특성)

  • Sung, JongHyun;Sun, JungSoo;Choi, SunMi;Bok, YoungJae;Kim, JinMan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.166-167
    • /
    • 2013
  • Bottom ash, which is discharged through a wet process in a thermal power plant, contains much unburned coal due to quenching and much salt due to seawater. However, dry bottom ash discharged through a dry process contains low unburned coal and salt, and has light -weight due to many pores. Therefore, it is expected that it can be used as lightweight aggregate. This study deals with the basic properties of concrete used dry bottom ash as coarse aggregate. As a results, the concrete having high content of dry bottom ash aggregate showed high slump by using water reducing agent and its air content was within 5±1.5% as designed value, similarly to normal weight concrete. It also showed a lower compressive strength than 100% of crushed stone.

  • PDF

Some Important Summer Oceanogaphic Phenomena in the East China Sea (夏季 東支那海의 重要한 海洋學的 現象들)

  • 박영형
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 1985
  • In this paper, the most important oceangraphic phenomena of the summer season in the East China Sea are reviewed. The hydrographic conditions in the suface layer above the seasonal thermocline are under great influence from solar heating, fresh water runoff mainly from the Yangtze River, and summer wind fields. In the lower layer below the thermocline, several distinct water masses e.g. the Kuroshio surface water, the Western North Pacific Central Water and the Yellow Sea Bottom Cold Water are intruded in response to the adjustment of the field of mass to the various dynamical processes. The frontal mixing between the intruded Yellow Sea Bottom Cold. Water and the Western North Pacific Central Water takes place in the bottom layer over the continental shelf south off Cheju Is. This mixed water probably has mush influence on the water properties of the intermediate and bottom layer around Cheju Is. and the south coast of Korea.

  • PDF

Properties of Controlled Low-Strength Material Containing Bottom Ash (Bottom Ash를 혼합한 저강도 고유동 충전재의 특성)

  • 원종필;이용수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.294-300
    • /
    • 2001
  • The effectiveness of bottom ash on the mechanical and physical properties of Controlled Low-Strength Material(CLSM) is investigated in this study, CLSM is defined by the ACI Committee 229 as a cementitious material that is in a flowable state at the time of placement and having a specified compressive strength of 83 kgf/$\textrm{cm}^2$ or less at the age of 28 days. This study was undertaken on the use of bottom ash as a fine aggregate in CLSM. Four different levels of bottom ash with fly ash contents, 25%, 50 %, 75%, 100%, are investigated. Laboratory test results conclude that inclusion of bottom ash increases the demand for mixing water in obtaining the required flow. However, the sand was reduced because it was adjusted to maintain a constant total volume. Miかe proportions were developed for producing CLSM at three 28-day strength levels: removal with tools (less than 7 kgf/$\textrm{cm}^2$), mechanical means (less than 20 kgf/$\textrm{cm}^2$), and power equipment (less than 83 kgf/cm\`). The physical and mechanical properties supports the concept that by-product bottom ash can be successfully used in CLSM.

Bottom Loss Variation of Low-Frequency Sound Wave in the Yellow Sea (황해에서 저주파 음파의 해저손실 변동)

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The sound wave in the sea propagates under the effect of water depth, sound speed structure, sea surface roughness, bottom roughness, and acoustic properties of bottom sediment. In shallow water, the bottom sediments are distributed very variously with place and the sound speed structure varying with time and space. In order to investigate the seasonal propagation characteristics of low-frequency sound wave in the Yellow Sea, propagation experiments were conducted along a track in the middle part of the Yellow Sea in spring, summer, and autumn. In this paper we consider seasonal variations of the sound speed profile and propagation loss based on the measurement results. Also we quantitatively investigate variation of bottom loss by dividing the propagation loss into three components: spreading loss, absorption loss, and bottom loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn, and the propagation losses measured in autumn were smaller than the losses in spring. The spreading loss and the absorption loss did not show seasonal variations, but the bottom loss showed seasonal variations. So it was thought that the seasonal variation of the propagation loss was due to the seasonal change of the bottom loss and the seasonal variation of the bottom loss was due to the change of the sound speed profile by season.

An Experimental Study on the Properties of Concrete according to Water-Cement Ratio and Bottom Ash Replacement Ratio (물시멘트비 및 Bottom Ash 대체율에 따른 콘크리트의 특성에 관한 실험적 연구)

  • 이종호;조봉석;이태희;김용로;최세진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.699-704
    • /
    • 2002
  • Recently, the coal ash production has been increased by increase of consumption of electric power. So it is important to find a reclaimed place and treatment utility for treating coal ash. Accordingly, in this study we performed an experimental study to compare and analyze the properties of concrete according to W/C and bottom ash replacement ratio. As a result of this study, it was found that the bleeding content was decreased according to decrease of W/C and increase of bottom ash replacement ratio, and the compressive strength of concrete using bottom ash was similar to plain concrete(replacement ratio 0%).

  • PDF