• Title/Summary/Keyword: water year

Search Result 3,024, Processing Time 0.028 seconds

Composition of Vitamin A, E, $B_l$ and $B_2$ Contents in Korean Cow's Raw Milk in Korea (국내산 원유 중 비타민 A, E, $B_l$$B_2$ 함량에 관한 연구)

  • Kwak Byung-Man;Kim Sung-Han;Kim Kang-Seob;Lee Ki-Woong;Ahn Jang-Hyuk;Jang Chi-Hoon
    • Food Science of Animal Resources
    • /
    • v.26 no.2
    • /
    • pp.245-251
    • /
    • 2006
  • This study was performed to investigate the changes of vitamin A, vitamin E, vitamin $B_l$ and vitamin $B_2$ contents in cow's raw milk collected from dairy farms in Chungcheong-do and Jeolla-do for a year. The contents of fat soluble vitamin A and E were changed as seasonal effect, but water soluble vitamin $B_l$ and $B_2$ contents were not changed as seasonal effect. Vitamin A content in cow's raw milk was as follows [minimum ${\sim}$maximum (mean), ug/100 mL]; $35.1{\sim}59.0$ (44.4) in spring, $36.7{\sim}65.6$ (50.0) in summer, $28.7{\sim}61.2$ (46.8) in autumn and $29.9{\sim}57.8$ (43.1) in winter. In case of vitamin E was as follows [minimum${\sim}$maximum (mean), ug/100 mL]; $28.3{\sim}59.2$ (45.8) in spring, $39.6{\sim}69.9$ (58.8) in summer, $35.0{\sim}62.8$ (46.2) in autumn and $26.0{\sim}55.4$ (41.5) in winter. In case of vitamin $B_l$ was as follow [minimum${\sim}$maximum (mean), ug/100 mL]; $27.7{\sim}57.9$ (42.84) in spring, $32.4{\sim}66.1$ (49.39) in summer, $34.1{\sim}63.7$ (46.69) in autumn and $20.6{\sim}61.4$ (43.20 in winter. The amounts of vitamin $B_2$ in cow's raw milk was as follows [minimum${\sim}$maximum (mean), ug/100 mL]; $150{\sim}182$ (160 in spring, $145{\sim}185$ (163) in summer, $149{\sim}180$ (166) in autumn and $148{\sim}190$ (167) in winter.

A Study on the Growth Diagnosis and Management Prescription for Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214) (진안 평지리 이팝나무군(천연기념물 제214호)의 생육진단 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Sang-Yub;Choi, Yung-Hyun;Son, Hee-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.115-127
    • /
    • 2018
  • This study was attempted to find out the value of cultural assets through the clear diagnosis and prescription of the dead and weakness factors of the Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214), The results are as follows. First, Since the designation of 13 natural monuments in 1968, since 1973, many years have passed since then. In particular, despite the removal of some of the buried soil during the maintenance process, such as retreating from the fence of the primary school after 2010, Second, The first and third surviving tree of the designated trees also have many branches that are dead, the leaves are dull, and the amount of leaves is small. vitality of tree is 'extremely bad', and the first branch has already been faded by a large number of branches, and the amount of leaves is considerably low this year, so that only two flowers are bloomed. The second is also in a 'bad'state, with small leaves, low leaf density, and deformed water. The largest number 1 in the world is added to the concern that the s coverd oil is assumed to be paddy soils. Third, It is found that the composition ratio of silt is high because it is known as '[silty loam(SiL)]'. In addition, the pH of the northern soil at pH 1 was 6.6, which was significantly different from that of the other soil. In addition, the organic matter content was higher than the appropriate range, which is considered to reflect the result of continuous application for protection management. Fourth, It is considered that the root cause of failure and growth of Jinan pyeongji-ri Population of Retusa Fringe Trees group is chronic syndrome of serious menstrual deterioration due to covered soil. This can also be attributed to the newly planted succession and to some of the deaths. Fifthly, It is urgent to gradually remove the subsoil part, which is estimated to be the cause of the initial damage. Above all, it is almost impossible to remove the coverd soil after grasping the details of the soil, such as clayey soil, which is buried in the rootstock. After removal of the coverd soil, a pestle is installed to improve the respiration of the roots and the ground with Masato. And the dead 4th dead wood and the 5th and 6th dead wood are the best, and the lower layer vegetation is mown. The viable neck should be removed from the upper surface, and the bark defect should undergo surgery and induce the development of blindness by vestibule below the growth point. Sixth, The underground roots should be identified to prepare a method to improve the decompression of the root and the respiration of the soil. It is induced by the shortening of rotten roots by tracing the first half of the rootstock to induce the generation of new roots. Seventh, We try mulching to suppress weed occurrence, trampling pressure, and soil moisturizing effect. In addition, consideration should be given to the fertilization of the foliar fertilizer, the injection of the nutrients, and the soil management of the inorganic fertilizer for the continuous nutrition supply. Future monitoring and forecasting plans should be developed to check for changes continuously.

The Relationship between Daesoon Thought and Prophecies of Jeong Gam: Emphasizing the Chinese Poetic Sources Transfigured by Jeungsan (대순사상과 『정감록』의 관계 - 증산이 변용한 한시 전거(典據)를 중심으로 -)

  • Park, Sang-kyu
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.36
    • /
    • pp.1-34
    • /
    • 2020
  • It has been suggested that Jeungsan's prophetic poem that starts with the verse "For about seven or eight years, there will be a castle in the ancient country [七八年間古國城] ⋯" originally comes from Prophecies of Jeong Gam (鄭鑑錄). Despite Jeungsan, himself, obviously having been critical of that text, this claim has become the basic grounds for discourse suggesting that Jeungsan was not only interested in Prophecies of Jeong Gam but also considerably influenced by the text. However, the claim itself was formulated due to misunderstandings of the Chinese poems that had been included in A Compilation of Secret Prophecies Hidden in the Family-clan of Seogye (西溪家臧訣). These poems pursue a different ideological orientation than the poem from Prophecies of Jeong Gam. Ultimately, the Chinese poem in the verse 84 the chapter titled, Prophetic Elucidations in The Canonical Scripture of Daesoon Jinrihoe cannot provide a basis for the claim that Jeungsan was strongly influenced by Prophecies of Jeong Gam. This claim that Prophecies of Jeong Gam made a deep impact on Jeungsan and Daesoon Thought was based on three other texts outside of those that appear within verse 84 of Prophetic Elucidations. The first supposedly-related line is: "Heaven opens at the period of the Rat (Ja 子), Earth opens at the period of the Ox (Chuk 丑), humankind starts at the period of the Tiger (Ihn 寅)." This line comes from from Shao Kangjie's Book of Supreme World Ordering Principles (皇極經世), and the line could be quoted idiomatically as an expression in the Joseon Dynasty. Accordingly, attempts to relate Daesoon Thought to Prophecies of Jeong Gam are a distortion that arise from the assumption that Jeungsan had a significant interest in Prophecies of Jeong Gam. The second related line is "At the foot of Mount Mother (母岳山), a golden icon of Buddha has the ability to speak [母岳山下 金佛能言]." That line is nearly identical to the verse "On the summit of Mount Mother, a golden icon of Buddha has the ability to speak [母岳山頭 金佛能言]." Yet, Jeungsan changed '頭 (du, the summit)' to '下 (ha, the foot or under)' and express his own unique religious prophecy. This allusion to the prophecies of Jeong Gam is actually a criticism designed to disprove the earlier prophecy. Third, is the verse, "The form of Buddhism, creation of daoism, and propriety of Confucianism [佛之形體仙之造化儒之凡節]," which is characteristically related to Daesoon Thought. This verse can only be found in the prophetic text, Prophecies of Chochang (蕉蒼訣), and it is provided a main source when alleging that Prophecies of Jeong Gam was an influence on Daesoon Thought. However, considering the context of Prophecies of Chochang and the year of its publication (it is assumed to be compiled after 1950s), this does not hold water as Jeungsan had already passed into Heaven several decades before that time. This disqualifies the verse from being a basis for asserting Prophecies of Jeong Gam as an influence on Daesoon Thought. Contrary to the original assertion, there is a considerable amount of evidence that Prophecies of Chochang absorbed aspects of Daesoon Thought, which were simply revised in a novel way. There is no truly compelling evidence underpinning the argument that Prophecies of Jeong Gam had a unilateral impact on Daesoon Thought. There seems to be a great deal of confusion and numerous misinterpretations on this matter. Therefore, the claim that Daesoon Thought, as developed by Jeungsan, was influenced by the discourse on dynastic revolution and feng shui contained in Prophecies of Jeong Gam should be re-examined at the level of its very premise.

Pharmacological Studies of Cefoperazone(T-1551) (Cefoperazone(T-1551)의 약리학적 연구)

  • Lim J.K.;Hong S.A.;Park C.W.;Kim M.S.;Suh Y.H.;Shin S.G.;Kim Y.S.;Kim H.W.;Lee J.S.;Chang K.C.;Lee S.K.;Chang K.C.;Kim I.S.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF