• Title/Summary/Keyword: water use risk

Search Result 206, Processing Time 0.035 seconds

Effect of Land Use Type on Shallow Groundwater Quality

  • Jeong Seung-Woo;Kampbell Donald H.;An Youn-Joo;Masoner Jason R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.122-126
    • /
    • 2005
  • Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a two-year period from 1999 to 2001 the monitoring wells were sampled every three months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land-use and temporal change.

  • PDF

A Study on the development of big data-based AI water meter freeze and burst risk information service (빅데이터 기반 인공지능 동파위험 정보서비스 개발을 위한 연구)

  • Lee, Jinuk;Kim, Sunghoon;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2023
  • Freeze and burst water meter in winter causes many social costs, such as meter replacement cost, inability of water use, and secondary damage by freezing water. The government is making efforts to modernize local waterworks, and in particular, is promoting SWM(Smart Water Management) project nationwide. In this study suggests a new freeze risk notification information service based on the temperature by IoT sensor inside the water meter box rather than outside temperature. In addition, in order to overcome the quantitative and regional limitation of IoT temperature sensors installed nationwide, and AI based temperature prediction model was developed that predicts the temperature inside water meter boxes based on data acquired from IoT temperature sensors and other information. Through the prediction model optimization process, a nationwide water meter freezing risk information service was convinced.

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

The factors to identify high risk family (고위험가족 선별을 위한 위험요인 분석)

  • 방숙명
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.2
    • /
    • pp.351-361
    • /
    • 1995
  • The main purpose of the study is to identify critical risk factors for development of a family assessment tool to screen high risk family. This study used a conceptual framework of family diagnosis developed by Eui-sook Kim's (1993) and analyzed risk factors to identify the high risk family. As employing a explorative and methodological study design, this study has four stages. 1. In the first stage, 34 family risk factors were identified by doing intensive literature review on conceptual framework of family diagnoses. 2. In the second stage, above risk factors were tested for content validity by consultation with 29 persons in community health nursing, nursing education, family theory, and social work. 3. In the third stage, existing survey data was used for actual application of the identified risk factors. The survey data used for this purpose was previously collected for the community diagnosis in a region of Seoul. At the final stage, through the comparison between high risk and low risk families, initially identified 34 risk factors decreased to 25 risk factors. Among 34 risk factors, six factors did not agree with content of questionnaries sand two factors were not significant in differentiating the high risk family Also, two risk factors showed high correlation between themselves, so only one of those two factors was chosen. As a result, twenty-five risk factors chosen to identify the high risk family are following ; 1. A single parent family due to divorce or death of a partner, or unweded single mother 2. A family with an unrelated household members 3. A family with a working mother with a young child 4. A family with no regular income 5. A family with no rule in family or too strict rules 6. A family with little or no support from other lam-ily members 7. A family with little or no support from friends or relatives 8. A family with little or no time to share with each other 9. A family with family history of hypertension, diabetus, cancer 10. A family with a sick person 11. A family with a mentally ill person 12. A family with a disabled person 13. A family with an alcoholic person 14. A family with a excessive smoker who smokes more than 1 pack / day 15. A family with too much salt intake in their diet. 16. A family with inappropriate management skills for family health 17. A family with high utilization of drug store than hospital to solve the health problems of the family 18. A family with disharmony between husband and wife 19. A family with conflicts among the family members 20. A family with unequal division of labor among family members 21. An authoritative family structure 22. A socially isolated family 23. The location of house is not residential area 24. A family with high risk of accidents 25. The drinking water and sewage systems are not hygienic. The main implication of the results of this study is clinical use. The high risk factors can be used to identify the high risk family effectively and efficiently. The use of high risk factors woule contribute to develop a conceptual framework of family diagnosis in Korea and the list of risk factors need to be revised continuously. Further researches are needed to develop an index of weight of each risk factor and to validate the risk factors.

  • PDF

Integrated Level 1-Level 2 decommissioning probabilistic risk assessment for boiling water reactors

  • Mercurio, Davide;Andersen, Vincent M.;Wagner, Kenneth C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.627-638
    • /
    • 2018
  • This article describes an integrated Level 1-Level 2 probabilistic risk assessment (PRA) methodology to evaluate the radiological risk during postulated accident scenarios initiated during the decommissioning phase of a typical Mark I containment boiling water reactor. The fuel damage scenarios include those initiated while the reactor is permanently shut down, defueled, and the spent fuel is located into the spent fuel storage pool. This article focuses on the integrated Level 1-Level 2 PRA aspects of the analysis, from the beginning of the accident to the radiological release into the environment. The integrated Level 1-Level 2 decommissioning PRA uses event trees and fault trees that assess the accident progression until and after fuel damage. Detailed deterministic severe accident analyses are performed to support the fault tree/event tree development and to provide source term information for the various pieces of the Level 1-Level 2 model. Source terms information is collected from accidents occurring in both the reactor pressure vessel and the spent fuel pool, including simultaneous accidents. The Level 1-Level 2 PRA model evaluates the temporal and physical changes in plant conditions including consideration of major uncertainties. The goal of this article is to provide a methodology framework to perform a decommissioning Probabilistic Risk Assessment (PRA), and an application to a real case study is provided to show the use of the methodology. Results will be derived from the integrated Level 1-Level 2 decommissioning PSA event tree in terms of fuel damage frequency, large release frequency, and large early release frequency, including uncertainties.

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.

Evaluation of Basin-Specific Water Use through Development of Water Use Assessment Index (이수평가지수 개발을 통한 유역별 물이용 특성 평가)

  • Baeck, Seung Hyub;Choi, Si Jung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.367-380
    • /
    • 2013
  • In this study, sub-indicators, and thematic mid-indexes to evaluate the water use characteristics were selected through historical data analysis and factor analysis, and consisted of the subject approach framework. And the integrated index was developed to evaluate water use characteristics of the watershed. Using developed index, the water use characteristics were assessed for 812 standard basins with the exception for North Korea using data of 1990 to 2007 from the relevant agencies. A sensitivity analysis is conducted for this study to determine the proper way through various normalization and weighting methods. To increase the objectivity of developed index, the history of the damage indicators are excluded in the analysis. In addition, in order to ensure its reliability, results from index with and without consideration of the damage history were compared. Also, the index is also applied to real data for 2008 Gangwon region to verify its field applicability. Through the validation process this index confirmed the adequacy for the indicators selection and calculation method. The results of this study were analyzed based on the spatial and time vulnerability of the basin's water use, which can be applied to various parts such as priority decision-making for water business or policy, mitigations for the vulnerable components of the basin, and supporting measures to establishment by providing relevant information about it.

The Effect of Singing Intervention for Women Elderly with Dysphagia Risk (연하장애 위험 여성노인의 노래중재 적용 효과)

  • Yun, Ok-Jong;Lee, Young-Hee
    • Korean Journal of Adult Nursing
    • /
    • v.24 no.4
    • /
    • pp.380-389
    • /
    • 2012
  • Purpose: This study was conducted to describe the risk of dysphagia and to evaluate the effects of a singing intervention for women elderly in community. Methods: One-group pre test-post test design was used. The subjects were 29 women over the age of sixty and residing in a local area. A singing intervention consisted of breathing, vowel production and singing. The one hour intervention occurred once a week for eight weeks. The variables of dysphagia risk, a swallowing test, and nutritional status were measured. Analysis was done by paired t-test. Results: There was a significant decrease in the score of dysphagia risk (p<.001). There were significant increases in the swallowing test scores [modified water swallowing test (p=.032), food test (p=.001)]. There were no significant differences in nutritional status (triceps skin fold thickness, mid arm muscle circumference). Conclusion: The findings support that a singing intervention can be helpful in reducing the risk of dysphagia may improve deglutition for the women elderly. These results suggest that this study may contribute to the use of a singing intervention for women elders with dysphagia risk.

Research on radar-based risk prediction of sudden downpour in urban area: case study of the metropolitan area (레이더 기반 도시지역 돌발성 호우의 위험성 사전 예측 : 수도권지역 사례 연구)

  • Yoon, Seongsim;Nakakita, Eiichi;Nishiwaki, Ryuta;Sato, Hiroto
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.749-759
    • /
    • 2016
  • The aim of this study is to apply and to evaluate the radar-based risk prediction algorithm for damage reduction by sudden localized heavy rain in urban areas. The algorithm is combined with three processes such as "detection of cumulonimbus convective cells that can cause a sudden downpour", "automatic tracking of the detected convective cells", and "risk prediction by considering the possibility of sudden downpour". This algorithm was applied to rain events that people were marooned in small urban stream. As the results, the convective cells were detected through this algorithm in advance and it showed that it is possible to determine the risk of the phenomenon of developing into local heavy rain. When use this risk predicted results for flood prevention operation, it is able to secure the evacuation time in small streams and be able to reduce the casualties.