• 제목/요약/키워드: water treatment process

검색결과 2,488건 처리시간 0.04초

정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가 (Evaluation of Haloacetic Acid Formation Potential in Drinking Water Treatment Process by Fraction Technique)

  • 손희종;황영도;류동춘;정철우;이건;손형식
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1655-1662
    • /
    • 2014
  • A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%~30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

정수처리 공정에서 연속식 입자계수기의 적용성 검토에 관한 연구 (Discussion of Problems During the Application of the On-line Particle Counter In Water Treatment Process)

  • 문성용;김승현
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.214-220
    • /
    • 2005
  • Errors may occur due to analysis methods and water quality during the application of the on-line particle counter In water treatment process. Errors caused by analysis methods include particle destruction by shear force due to inflow speed and tube friction, as well as interruption by screening, bubbles and contaminants. Since errors happen frequently because of these factors, it is necessary to examine and evaluate such errors during the application of a particle counter. Errors can be large due to screening and bubbles. Measurement values are effective for water analysis after filtration process. However, because of screening, only measurement values for particles above $7{\mu}m$ are valid for water with a turbidity between 3-10NTU. As particle numbers around $10{\mu}m$ increase a lot after ozone treatment, sufficient pretreatment process is necessary. Physical conditions should keep stable for inflow to decrease errors caused by shear force.

A study on membrane technology for surface water treatment: Synthesis, characterization and performance test

  • Haan, Teow Yeit;Shah, Mubassir;Chun, Ho Kah;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.69-77
    • /
    • 2018
  • The use of membrane as an innovative technology for water treatment process has now widely been accepted and adopted to replace the conventional water treatment process in increasing fresh water production for various domestic and industrial purposes. In this study, ultrafiltration (UF) membranes with different formulation were fabricated via phase inversion method. The membranes were fabricated by varying the polymer concentration (16 wt%, 18 wt%, 20 wt%, and 21 wt%). A series of tests, such as field emission scanning electron microscope (FESEM), pore size and porosity, contact angle, and zeta potential were performed to characterize the membranes. The membrane performance in terms of permeation flux and rejection were evaluated using a laboratory bench-scale test unit with mine water, lake water and tube well as model feed solution. Long hour filtration study of the membranes provides the information on its fouling property. Few pore blocking mechanism models were proposed to examine the behaviour of flux reduction and to estimate the fouling parameters based on different degree of fouling. 21 wt% PVDF membrane with smaller membrane pore size showed an excellent performance for surface water treatment in which the treated water complied with NWQS class II standard.

분리막 및 광촉매의 혼성 정수/하수 처리 공정 (Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst)

  • 박진용
    • 멤브레인
    • /
    • 제28권3호
    • /
    • pp.143-156
    • /
    • 2018
  • 본 총설은 다양한 저널 게재 논문으로부터 분리막 및 광촉매의 혼성 정수/하수 처리 공정을 요약하였다. 이 총설에는 (1) 분리막 광촉매 반응기(membrane photoreactor, MPR), (2) 분리막 결합 광촉매 공정에서 막오염 관리, (3) 유기 오염물의 분해를 위한 광촉매 분리막 반응기, (4) 정수처리용 막분리 공정과 광촉매 분해의 결합, (5) 휴믹산 분해를 위한 광촉매 및 세라믹 막여과의 혼성공정, (6) 활성슬러지 여과를 위한 한외여과의 막오염에 이산화티타늄 나노입자의 영향, (7) 정수처리용 광촉매 및 정밀여과의 혼성시스템, (8) 선박 평형수 처리용 한외여과 및 광촉매의 혼성공정 및 (9) 분리막 및 광촉매 코팅 프로필렌 구의 혼성수처리 공정이 포함되어 있다.

오존산화에 의한 수처리공정에서 VOCs의 제거 특성 (VOCs Removal in Drinking Water Treatment Process by Ozonation)

  • 한명호;최준호;임학상
    • 상하수도학회지
    • /
    • 제11권2호
    • /
    • pp.65-75
    • /
    • 1997
  • Removal characteristics of volatile organic carbons(VOCs) by ozone oxidation and other processes in the raw water of the 1st Nakdong water treatment plant were investigated. Dichrolomethane, toluene and other 7 compounds were detected in the raw water. With regard to detected 4 compounds in finally treated water, it was found that VOCs could not be removed effectively by traditional water treatment process. Benzene, 1,2-dichlorobenzne were not detected in the raw water but they were detected in the process of treatment. The compound of highest detection frequency was dichloromethane. When the raw water was controlled at pH 7, temperature $20^{\circ}C$, 5 minutes as contact time, 10 minutes as reaction time, the removal rate of THMFP, $KMnO_4$ demand, TOC, $UV_{254nm}$ and $NH_3-N$ were 46.4%, 22%, 19.6%, 31% and 8%, respectively. From estimating the finally treated water qualities in 7 kinds of treatment processes, P-6 process(raw water-chlorination-coagulation-ozonation) was most effective for organics removal and THMs control. Removal efficiencies for $KMnO_4$ demand and TOC by the process which combined preozonation with coagulation was twice better than only preozonation. $NH_3-N$ removal rate was shown as 10% by P-3 process(raw water-coagulation-ozonation), but 83% of $NH_3-N$ was removed by P-4 process(raw water-coagulation-chlorination). It was found that the chlorination is more effective than the ozonation for the NH3-N removal as commonly known.

  • PDF

기존 하수처리장 성능개선을 위한 NPR공정의 적용 (An Application of the NPR Process for the Treatability Improvement of an Existing Sewage Treatment Plant)

  • 문태훈;고광백;송의열
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.756-760
    • /
    • 2007
  • Most of the sewage treatment plants in Korea are being operated by using the conventional activated sludge process. Recently, as the water criteria have been strict with regard to such main culprits of eutrophication, the existing sewage treatment plants are obliged to upgrade their treatment technology to meet the criteria. Under such circumstances, this study was aimed at analyzing the conditions of an existing sewage treatment plants in Korea, and thereupon, test its treatment performance for the actual sewage water by operating a pilot plant. When the pilot plant was operated with the NPR process at the capacity of $30m^3/day$, the average contents of BOD, $COD_{Mn}$, SS, T-N and T-P in the effluents were 7.0 mg/L, 9.7 mg/L, 5.1 mg/L, 8.0 mg/L and 0.23 mg/L, respectively, which were very stable in general. Accordingly, if the NPR process used for this pilot plant to upgrade the treatment technology for the sewage treatment plat could be adopted, the effluent water quality criteria effective beginning from 2008 would be met.

Fenton 산화공정과 Zeolite 흡착공정을 연계한 축산폐수처리에 관한 연구 (A Study on Treatment of Livestock wastewater using Fenton Oxidation and Zeolite Adsorption Process)

  • 조창우;김윤정;정팔진
    • 한국물환경학회지
    • /
    • 제21권5호
    • /
    • pp.505-510
    • /
    • 2005
  • The objective of this study was to remove non-biodegradable matters and ammonia ion in livestock wastewater using Fenton oxidation and Zeolite adsorption process. After coagulation process as 1st treatment, non-biodegradable matters remained after 1st treatment were removed by using OH radical produced in Fenton oxidation process. Zeolite as cation adsoption process was used to remove ammonia ion in 2nd treatment water. As a result of treatment using these processes, NBDCOD removal efficiency was over 90% and ammonia ion was almost removed. Most aromatics or polynuclear aromatics like benzene, phenol and scatol in livestock wastewater wasn't detected after Fenton oxidation process.

활성슬러지공정과 고도처리공정에 따른 하수처리수의 처리효율과 유기물 특성 (Treatment Efficiency and Organic Matter Characterization of Wastewater through Activated Sludge Process and Advanced Wastewater Treatment Process)

  • 홍지혜;손진식
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.807-813
    • /
    • 2004
  • Wastewater was treated by two different treatment processes; activated sludge process and advanced wastewater treatment process (KNR process) using lab-scale experiment. Two treated wastewater showed good treatment efficiency of organic matter removal, up to 90% removal. Nitrogen and phosphorus were not effectively removed though activated sludge process, while KNR process showed good removal efficiency of nitrogen and phosphorus; 56% nitrogen removal and 95% phosphorus removal. KNR process showed better removal efficiency of organic matter, nitrogen, and phosphorus compared to activated sludge process. Organic matter characterization was tracked though measurement of UV scan, SUVA, and XAD fractionation. Treated wastewater showed higher SUVA value than wastewater influent, indicting less aromatic characteristic of organic matter. XAD fractionation showed hydrophilic fraction decreased though wastewater treatment, suggesting microbes preferentially digest hydrophilic and aliphatic molecules rather than hydrophobic and aromatic molecules of organic matter.

고도정수처리에서 사여과와 정밀여과의 유기물처리특성에 관한 연구 (Treatment Characteristics of Sand Filtration and Microfiltration (MF) in Advanced Water Treatment)

  • 김형석;이병호
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.723-734
    • /
    • 2010
  • With a belief of high water quality production and less chemical usage, membrane technology including Microfiltration (MF), Ultrafiltration (UF), and Nanofiltration(NF) is being employed more and more in drinking water treatment process. However, due to higher energy consumption of UF and NF, MF is normally used for drinking water treatment especially in a plant of large scale. In this investigation, performance ofsand filtration and membrane filtration was compared regarding removal of various water quality parameters, such as TOC, DOC, KMnO4 consumption, THMFP, and HAAFP. Two lines of pilot plant have been operated, one of which line is a traditional advanced water treatment process which includes sedimentation, sand filtration, ozonation, and activated carbon, and the other line is an alternative treatment process which includes sedimentation with inclined plate, MF membrane, ozonation, and activated carbon. For the first about 4months of period, MF filtration showed similar or little bit higher performance than sand filtration. However, after about 4month later, sand filtration showed much higher performance in removing all parameters monitored in the investigation. It was found that sand filtration is a better option than MF filtration as far as microbial community is fully activated in sand filter bed.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.