• Title/Summary/Keyword: water treatment plant sludge

Search Result 225, Processing Time 0.022 seconds

Research of Sludge Quantity and Evaluation of Sludge Handling Facilities in Water Treatment Plants (정수 슬러지 발생량 조사 및 슬러지 처리시설의 공정평가)

  • Moon, Seong-Yong;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.279-290
    • /
    • 2004
  • Sludge quantity has increased at "A"water treatment plant due to deterioration of raw water quality and GAC installation. Increased sludge resulted in overloading on sludge handling facilities. The object of this study is to survey sludge quantity and capacity of sludge handling facilities at "A"water treatment plant. Measured quantity of sedimentation sludge considerably exceeded the design capacity of sludge holding basin. Sludge holding basin was properly designed, but low concentration of sludge discharged from sedimentation basin caused production of large volume of the sludge. Timer operated control system for sludge withdrawal unit and leakage through a control valve were suspected to cause the low concentration. Augmentation of the control system by a turbidity meter and addition of a new control valve successfully reduced the sludge volume enough to satisfy the design capacity of sludge holding basin. Unlike sedimentation sludge, measured quantity of washwater was considerably less than the design capacity of washwater basin because it was over-designed.

LAND FARMING OF WATER PLANT ALUM SLUDGE ON ACID MINERAL SOIL AFFECTED BY ACID WATER

  • Lee, Seung-Sin;Kim, Jae-Gon;Moon, Hi-Soo;Kang, Il-Mo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.182-186
    • /
    • 2001
  • An acid forest surface soil as a land farming medium was treated with a water plant alum sludge at 0 to 18%. Indian mustard was grown in the treated soil in a greenhouse for 5 weeks and watered with pH 4 tap water adjusted with a mixed acid (1HNO$_3$: 2H$_2$SO$_4$) during plant growth. Changes in soil property, leachate chemistry, plant growth, and plant uptake of elements by the sludge treatment were determined. The alum sludge treatment increased buffer capacity to acidity, hydraulic conductivity, water holding capacity, and phosphate adsorption of the soil and decreased bulk density and mobility of small particles. The sludge treatment reduced leaching of Al, Mg, K, Na, and root elongation. Plant did uptake less amount of the cations and P but more Ca with the sludge treatment.

  • PDF

Strategy for efficient operation on the backwash waste treatment in membrane filtration water treatment plant (막여과 정수장 배출수처리시설의 효율적인 운영방안)

  • Jung, Wonchae;Yu, Youngbeom;Lee, Sunju;Moon, Yongtaik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.479-489
    • /
    • 2014
  • Membrane backwashing waste shows seasonally different characteristics and it has bad settleability differently from general backwashing waste in water treatment plant. When chemicals was injected to membrane backwashing waste, the settleability was better than chemicals was not injected. However, when settled lower sludge was not discharged, flowing sludge continuously was concentrated over a certain surface and floatation penomena occurred according to flowing velocity. When the lower sludge was discharged continuously in the thickener to prevent floatation penomena of turbidity materials, the depth of sludge surface was the least and the settleability increased.

Improvement of effluent water quality by sludge aeration at the conventional drinking water treatment plant (정수장 슬러지 폭기를 통한 방류수 수질 개선)

  • Choi, Ilgyung;Shin, Changsoo;Beak, Inho;Lim, Jaecheol;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.249-255
    • /
    • 2014
  • So many drinking water treatment plants are under various difficulties by new reinforced effluent standards. Since the target turbidity, much higher than annual average, for designing sludge thickener have to be set to confront high turbidity season, the sludge at thickener should be put up for a long time during usual days. So the soluble manganese and chloroform may be formed under the anaerobic environment in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. As a result, the final effluent quality and sludge volume were much improved; 41 % of manganese, 62 % of chloroform and 35 % of sludge volume. Additionally, effluent quality was improved ; 61 % of Manganese on aeration with pH control and we could make sure of stability effluent quality despite a long sludge retention time. We recommended the standard of installation sludge aeration equipment to nationally supply water treatment plant under effluent water quality problem ; Manganese, Chloroform, etc.

Simulations of a System Dynamics Model for Operations and Maintenance of Activated-Sludge Wastewater Treatment Plants (활성슬러지 하수처리시설 운영 및 유지관리를 위한 시스템다이내믹스 모델의 모의에 관한 연구)

  • Park, Suwan;Kim, Bong Jae;Jun, Hwan Don;Kim, In Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.905-912
    • /
    • 2006
  • In this paper, simulation methods of the system dynamics model developed by Das et al. (1997) for activated-sludge wastewater treatment plants are illustrated in an attempt to determine the operating rules and the policies related to capacity expansion of an activated-sludge wastewater treatment plant. For existing conditions, the analyses were performed by varying activated-sludge return rate to observe changes in effluent water quality and treatment efficiency. The effluent water quality is also analyzed for various average daily inflow conditions and activated-sludge return rates. As a result, without expanding the aeration tank, maximum average daily inflow that can satisfy the effluent water quality standard of BOD $0.02kg/m^3$ was determined as $2,840m^3/hr$, subject to 100% of activated-sludge return rate while other factors remain constant. When the activated-sludge return rate is less than 100%, expansion of the aeration tank is necessary and minimum sizes of the aeration tank to satisfy the effluent water quality standard were determined for various activated-sludge return rates. In addition, the total operating and maintenance as well as unit treatment cost regression equations for activated-sludge wastewater treatment plants are suggested by using the cost data that are obtained from Water and Wastewater Division, Ministry of Environment. The regression analyses showed that the economies of scale phenomena exist in the operating and maintenance costs of activated-sludge wastewater treatment plants.

A Study on Fuzzy Control Method of Energy Saving for Activated Sludge Process in Sewage Treatment Plant (하수처리 활성오니공정의 에너지 절감을 위한 퍼지 제어 방법에 관한 연구)

  • Nahm, Eui-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1477-1485
    • /
    • 2018
  • There are two major issues for activated sludge process in sewage treatment plant. One is how to make sewage be more clean and the other is the energy saving in sewage treatment process. The major monitoring sewage qualities are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent. These are transmitted to the national TMS(Telemetry Monitoring System) at every hour. If these exceed the environmental standard, the environmental charges imposed. So, these water qualities are to be controlled below the environmental standard in operation of sewage treatment plant. And recently, the energy saving is also important in process operation. Over 50% energy is consumed in blowers and motors for injection oxygen into aeration tank. So, with the water qualities to be controlled below the environmental standard, the energy saving also is to be accomplished for efficient plant management. Almost researches are aimed to control water quality without considering energy saving. AI techniques have been used for control water quality. AI modeling simulator provided the optimal control inputs(blower speed, waste sludge, return sludge) for control water quality. Blower speed is the main control input for activated sludge process. To make sewage be more clean, the excessive blower speed is supplied, but water quality is not better than the previous. In results, non necessary energy is consumed. In this paper we propose a new method that the energy saving also is to be accomplished with the water qualities to be controlled below the environmental standard for efficient plant management. Water qualities in only aeration tank are used the inputs of fuzzy models. Outputs of these models are chemical oxygen demand, phosphorus, nitrogen, suspended solid in effluent and have the environmental standards. In test, we found this method could save 10% energy than the previous methods.

Loess and Lime Treatment for Modification of Waterworks Sludges (황토와 석회의 혼합처리에 의한 정수 슬러지의 개질화에 관한 연구)

  • Lim, Sung-Jin;Cho, Jae-Jun;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.318-327
    • /
    • 2000
  • Sludge production from water treatment plants is increasing each year because water resources deterioration is proceeding and water supply facilities are growing due to water demand increase. Water treatment plant sludges can be modified to soil cover in sanitary landfilling site through the lime treatment and other alternatives. The compression strength of $1.0kg/cm^2$ is necessary for the dozer operation on soft son cover material at municipal landfilling site. Modified sludge was experimentally produced in this study with lime, bentonite, loess, and activated loess dosing. X-ray diffraction patterns of the limed water treatment plant sludge confirmed the presence of calcium carbonate and ettringite. Unconfined compression strength properties of modified sludges showed material property improvement applicable for soil cover alternatives. When adding 20-30% activated loess to water treatment plant sludges. the modified sludges could reach the compression strength for cover soil after 7 days solidification reaction, but decrease of compression strength was intentioned in 28 days reaction period. Solidification effect of the modified sludge with activated loess was observed through the scanning electron microscope.

  • PDF

Influence of pH on Mn Concentration of Effluent from Sludge Thickener of Water Treatment Plant (정수장 슬러지 농축조 배출수의 망간 농도에 미치는 pH의 영향)

  • Kim, Younjung;Lee, Seungeun;Baek, Seungcheol;Kim, Taeheui
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.27-33
    • /
    • 2015
  • Manganese in sludge precipitated during water treatment might be soluble again in effluent from sludge thickener. If that happens, the manganese concentration of effluent from water treatment plant will exceed the limit for clean reservation. In this study the influence of pH on Mn concentration of effluent from sludge thickener of water treatment plant was investigated. When the pHs of sludge solutions increased with alkaline materials such as NaOH, KOH, CaO, $Ca(OH)_2$, $CaCO_3$, the Mn concentrations of sludge solutions decreased under the limit. The Mn concentration of effluent from sludge thickener could be controlled with waste limestones from beneficiation process at limestone mine as an alkaline material.

Analysis of the sludge thickening characteristics in the thickener using CFD Model (CFD를 이용한 농축조 슬러지의 유출흐름특성 해석)

  • Park, No-Suk;Moon, Yong-Taik;Kim, Byung-Goon;Kim, Hong-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.777-782
    • /
    • 2011
  • The residual treatment facilities in WTP(water treatment plant) play an important role in solid-liquid separation. At present, it is difficult to solve problems related with thickening and dewatering of WTP sludge, and discharging waste water to river. The quantity of residuals generated from water treatment plants depends upon the raw water quality, dosage of chemicals used, performance of the treatment process, method of sludge removal, efficiency of sedimentation, and backwashing frequency. Sludge production by the physical separation of SS(Suspended Solid) occurs under quiescent conditions in the primary clarifier, where SSs are allowed to settle and to consolidate on the clarifier bottom. Raw primary sludge results when the settled solids are hydraulically removed from the tank. In this study, Drawing characteristics of the sludge thickening in the thickener of Water Treatment Plants was simulated by Using CFD(Computational Fluid Dynamics.

A Study on the Removal of Phosphorus in the Lake (호수내의 인 제거에 관한 연구)

  • Kim, Kyoungtae;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1998
  • The feasibility of usage of sludge from water treatment plant and chalk from schools and institutes was investigated to remove the phosphorus in the lakes which induce the eutrophication every year. In this study phosphorus removal efficiencies of sludge and chalk were investigated by changing various factors. Higher phosphorus removal efficiency using larger particle size of chalk was observed which means that the surface area is not an important factor in removing phosphorus in aqueous phase. The proper shaking time and temperature were 2 hours and $25^{\circ}C$, respectively. The removal efficiency using sludge from water treatment plant was almost 100%, which is similar to those of CaO and $Ca(OH)_2$. It means that sludge can be reused in removing phosphorus. It was also found that chalk was better in removing phosphorus under alkaline condition and sludge was better under acidic condition. About 75% phosphorus removal efficiency was observed using sludge from the water sample in Lake Sihwa.

  • PDF