• Title/Summary/Keyword: water treatment chemicals

Search Result 282, Processing Time 0.027 seconds

Analysis on the effect of harmonics filter applied to water treatment facilities (고조파 저감장치 현장적용 효과 분석)

  • Lee Eun Chun;Byun Il Hwan;Shin Gang Wook;Hong Sung Taek;Lee Eun Woong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.273-275
    • /
    • 2004
  • Recently, many water treatment facilities are operated by automatic control or by remote control. These high technology control systems require more stable power supply than before Badly most automatic control systems adopted in water treatment facilities are non-linear load which generates electrical harmonics inevitably. This study is intended to measure and analyze the electrical harmonics occurred at the chemicals control device which is inverter application circuit. and to show the effect of the harmonics filter.

  • PDF

Surfactant enhanced filtration performances of monochlorophenol isomers through low-pressure membrane

  • Kumar, Yogesh;Brahmbhatt, H.;Trivedi, G.S.;Bhattacharya, A.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.137-145
    • /
    • 2011
  • Membrane processes are major breakthrough for the removal of organic pollutants in water remediation. The separations of solutes depend on nature of the membranes and solutes. The separation performance depends on the nature of the solutes (i.e., molecular volume, polarity, and hydrophobicity) for the same membrane. As 4-chlorophenol is of more dipolemoment compared to 2-chlorophenol, the orientation of the molecule enables it pass through the pores of the membrane, which is of negatively charged and thus separation order follows: 2-chlorophenol > 4-chlorophenol. Hydrophobicity factor also supports the order. Addition of sodium dodecyl sulfate (SDS) to chlorophenol solution shows remarkable increase in separation performance of the membrane. The improvement in separation is 1.8 and 1.5 times for 4- and 2- chlorophenol consecutively in case of 0.0082 M SDS (1cmc = 0.0082 M) in the solution. 4-chlorophenol has better attachment tendency with SDS because of its relatively more hydrophobic nature and thus reflects in performance i.e. the separation performance of 4-chlorophenol with SDS through the membrane is better compared to 2-chlorophenol.

A Study on the Correct injection method for low dissolution liquid in the Water Treatment Plant (상수도의 저용해성 액체 정량투입 방안 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.273-277
    • /
    • 2005
  • The large particles of suspended matter in raw water can be removed by allowing them to settle out in a presedimentation basin. But there are smaller particles in almost all surface water and some groundwater that will not settle out within a reasonable time without some help to accelerate the process, In the coagulation and flocculation processes, nonsettleable solids are converted into large and heavier settleable solids by physical-chemical changes broght about by adding and mixing coagulant chemicals into the raw water. The object of this research was to improve corrective injection method for low dissolution liquid in the water treatment plant. A sort of chemical feed equipment are diaphram pump, flow control in combined magnetic flowmeter md control valve, roto dipper wheel system and tube pump. Particularly low dissolution liquid (Calcium Hydroxide) put in a bit by feed equipment, tube pump is very useful method for corrective injection method in the water treatment plant.

  • PDF

POTABLE WATER TREATMENT BY POLYACRYLAMIDE BASE FLOCCULANTS, COUPLED WITH AN INORGANIC COAGULANT

  • Bae, Young-Han;Kim, Hyung-Jun;Lee, Eun-Joo;Sung, Nak-Chang;Lee, Sung-Sik;Kim, Young-Han
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • For this study, we polymerized polyacrylamide base flocculants (PAA) and tested their properties and settling efficiency as a treatment for potable water. The most common chemicals for potable water treatment in Korea are alum or PAC. However, due to various reasons (such as rainy season or algae), inorganic flocculants cannot be solely depended on to solve all the problems caused by the poor quality of inflow water. When PAA coupled with coagulants in a potable water purification process is used, the turbidity removal efficiency increases by a factor of three on a single chemical system using PAC (Raw water: 5.21 NTU; Treated PAA+PAC: 0.34 NTU; and, Treated PAC: 1.04 NTU). It is possible to offset the toxic effect of residual monomers in treated water using PAA, because the concentrations of residual acrylamide are less than 400 mg/L in the polymer itself and less than $0.04\;{\mu}g/L$ in the treated water base at a dosage of 0.1 mg/L. Therefore, PAAs may be a workable, and dependable, potable water treatment process for the high pollutant level of resource water.

Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol

  • Li, Jiajia;Li, Liangqing;Yang, Jianhua;Lu, Jinming;Wang, Jinqu
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.353-360
    • /
    • 2019
  • ZSM-5 membrane was prepared on tubular macroporous ${\alpha}$-alumina support using a different synthesis route. The effects of organic template agent and Si/Al ratio of the synthesis gel on morphology, structure, and separation performance of the ZSM-5 membrane used for dehydration of isopropanol were investigated. High water perm-selectivity ZSM-5 membrane with a thickness of about $3.0{\mu}m$ and a low Si/Al ratio of 10.1 was successfully prepared from organotemplate-free synthesis gel with a molar composition of $SiO_2$ : $0.050Al_2O_3$ : $0.21Na_2O$ : NaF : $51.6H_2O$ at $175^{\circ}C$ for 24 h. The ZSM-5 membrane exhibited high pervaporation performance with a flux of $3.92kg/(m^2{\cdot}h)$ and corresponding separation factor of higher than 10,000 for dehydration of 90 wt.% isopropanol/water mixture at $75^{\circ}C$.

Regeneration of solid phase filter by chemical cleaning

  • Byung-Dae Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Recently, separation membranes have been applied to fields such as water supply, sewage treatment, gray water reuse, and air pollution control. Chemical cleaning technology is attracting attention among the methods of reusing these expensive separation membranes. It was found that the separation membrane could be regenerated using chemical cleaning. Specifically, it was found that the use time of the separation membranes regenerated by chemical cleaning was sustainable for more than 1,700 hours. Additionally, it was found that the flux recovery ratio after chemical cleaning was maintained at least 60%. In addition, the flux recovery ratio of HYDREX 4710, an organic membrane cleaner, and 4703, an inorganic membrane cleaner, was 76% and 62%, respectively, showing the highest flux recovery ratio among the chemicals used. Considering that the target raw water of this study is biological secondary treatment water, it was suggested that chemical cleaning could be actively used to regenerate separation membranes in future water treatment.

A study on the effects of environmental investment and costs on environmental performance (환경 투자 및 비용이 기업의 환경성과에 미치는 영향)

  • Park, Gwang-Dueg;Park, No-Suk;Kim, Seong-Su;Seo, In-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.315-320
    • /
    • 2009
  • This study found that introduction of environmental systems and increased environmental investment have a major impact on K company's sustainable development. The analysis indicated that the environmental investment variable has a close relationship with production quantity, sales, and the amount of sludge treatment variables in K company. However, all other variables including the cost of disinfection chemicals, and the expenditure of sludge treatment have no relationship with the environmental investment variable. Additionally, short-term results show that the company's environmental expenditure variable is conversely related with the environmental performance variable.

Conservation of Excavated Lacquer-wares for using artificially water-soaked Lacquer-wares (인공수침 칠기를 이용한 고대칠기 보존연구)

  • Kim, Soo-Chul
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.49-58
    • /
    • 2007
  • Among the treatment results of test samples of the antique lacquer-ware, the treatment with PEG#3,350 40% solution displayed excellent effect with low shrinkage ratio; in weight gain the treatment with Sucrose 19%+Glycerin 1%(t-butanol 5% in water) solution showed consistent increase. However during the impregnation process of Sucrose, the weight of the testing samples decreased by dehydration because the inner part of the test samples and the treatment solution showed concentration gradient. Therefore, we concluded longer impregnation period should be necessary to prevent dehydration. Since both higher and lower molecular weight treatment chemicals could penetrate into the wood of the lacquer-ware, air drying and conditioning after impregnation treatment with high concentration chemicals would be possible, as well as vacuum freeze-drying.

  • PDF

Fabrication of TiO2 Impregnated Stainless Steel Fiber Photocatalyts and Evaluation of Photocatalytic Activity (TiO2 담지 스테인리스 강 섬유 광촉매 제조 및 광촉매 활성 평가)

  • Song, Sun-Jung;Kim, Kyoung Seok;Kim, Kyung Hwan;Li, Hui Jie;Cho, Dong Lyun;Kim, Jong Beom;Park, Hee Ju;Shon, Hokyong;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • $TiO_2$ impregnated stainless steel fiber photocatalysts ($TiO_2/SSF$) were fabricated to overcome inherent problems of powdery $TiO_2$ photocatalysts in water treatment. Adhesion strength of the impregnated $TiO_2$ was examined using an ultrasonic-cleaner. Photocatalytic activity was evaluated through decomposition experiment of methylene blue and formic acid. Bactericidal efficiency was evaluated through sterilization experiment of E. Coli and Vibrio Vulnificus. Adhesion strength of the impregnated $TiO_2$ was so high that more than 95% was left over even after the treatment in an ultrasonic-cleaner for 30 min. Methylene blue and formic acid were decomposed as much as 60% and 38% of the initial concentration and more than 99.9% of E. Coli and Vibrio Vulnificus were killed after 1 hour exposure to the prepared photocatalyst under UV irradiation. In the case of decomposition of formic acid, decomposition ratio increased if oxidants were added. Especially the decomposition ratio increased as high as 80% when hydrogen peroxide was added as an oxidant.

Research Trend of Membrane for Water Treatment by Analysis of Patent and Papers Publication (특허 및 논문 게재 분석을 통한 수처리용 분리막의 연구동향)

  • Woo, Chang Hwa
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-419
    • /
    • 2017
  • Since the beginning of the water shortage by disasters such as global warming, environmental pollution, and drought, development of original technology and studies have been undergone to increase availability of water resources. Among them the water treatment separation membrane technology is an environmentally friendly process that does not use chemicals and shows better water quality improvement effect than conventional physicochemical and biological processes. The water treatment membrane can be applied to various fields such as waste water treatment, water purification treatment, seawater desalination, ion exchange process, ultrapure water production, organic solvent separation and water treatment technology, and it tends to expand the range of application. In the core technology of water treatment membrane, researches are being actively carried out to develop a separation membrane of better performance by controlling the pore size to adjust the separation performance. In this review, we summarized the frequency of announcement by country and organization through the technological competitiveness evaluation of patents and papers of the water separation membrane. Also, we evaluated the results from membrane research for waste water treatment, water purification treatment, seawater desalination, ion exchange process and present the future direction of research.