• Title/Summary/Keyword: water transmission

Search Result 989, Processing Time 0.031 seconds

Application of a Multiobjective Technique for Optimum Operation of Pumps and Reservoirs in Service Water Transmission Systems (다목적 분석 기법을 이용한 상수도 송수계의 펌프와 배수지의 연계 최적 운영)

  • Ko, Seok-Ku;Oh, Min-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.738-743
    • /
    • 1991
  • A multiobjective analysis technique was applied for the optimum operation of pumps and reservoirs in service water transmission systems. Three major objectives were identified and assessed on the normally operating service water transmission systems. They are, 1) stability of pump operation; 2) economic point of view in minimizing the energy cost for pumping; 3) reliability in meeting the stochasticaly varying demands. The measures of these objectives were required times of pump on-offs in stability, required total energy cost in economics, and minimum required storage during the operating horizon in reliability. In order to find the best meeting solution to the decision maker, a set of non-dominated solutions which show the tradeoff relationships between the considering objectives were generated. The DM selects the best solution from this explicit tradeoff relationships using his heuristic decision rules or experience. The theory was verified by applying to the Kumi Service Water System. A combined technique of the ${\varepsilon}-constraint$ and the weighting methods was used to generate the nondominated solutions, and the dynamic programming algorithm was applied to find the optimal solution for the discretized multi-objective analysis problems.

  • PDF

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

A Study on the Optimum Cooling Condition of the Underground Power Transmission Cable Equipped with a Separate Pipe Cooling System (간접냉각이 이용된 지중송전케이블의 적정냉각조건에 관한 연구)

  • Park, M.H;Che, G.S.;Seo, J.Y.;Kim, J.G.;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-276
    • /
    • 1992
  • The transmission current in a power cable is determined under the condition of separate pipe cooling. To this end, the thermal analysis is conducted with the standard condition of separate pipe cooling system, which constitutes one of the underground power transmission system. The changes of transmission current in a power cable with respect to the variation of temperatures and flow rates of inlet cooling water as well as the cooling spans are also determined. As a consequnce, the corresponding transmission current is shown to vary within allowable limit, resulting in the linear variation of the current for most of the cable routes. The abrupt changes of current, however, for the given flow rate of inlet cooling water in some cooling span lead to the adverse effects on the smooth current transmission within the underground power transmission system. In practice, it is expected that the desinging of the separate pipe cooling system in conjunction with the evaluation of system capacity should take into account the effects of design condition on the inlet cooling flow rate.

  • PDF

Effect of Tall fescue (Schedonorus phoenix Scop.) Genotype on Endophyte (Neotyphodium coenophialum) Transmission under Water stress

  • Noh, Jaejong;Ju, Ho-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.325-334
    • /
    • 2012
  • It has been known that endophyte (Neotyphodium coenophialum) is beneficial to tall fescue (Schedonorus phoenix Scop.) because the mutualistic endophyte is able to confers tolerance against abiotic and biotic stresses to tall fescue. However, this fungal endophyte produces toxic alkaloid resulting in negative effects on animal performance. Recently, Non-toxic endophyte have been developed and inserted into tall fescue to avoid detrimental effect on animal but remaining positive influence on tall fescue. In order to keep this beneficial impact, it is essential to have endophyte infected tall fescue through vertical transmission from maternal plants to seeds. Little research has been carried out on endophyte transmission. To get basic information related to endophyte transmission, experiment was conducted to examine the effect of plant genotype on endophyte transmission under water stresses. Overall endophyte concentration in seeds was higher than that in panicles and endophyte concentration in seeds and panicles relied on plant. This study revealed that drought is not a critical component to control the endophyte transmission from maternal plants to seeds. Plant genotype is an important factor controlling the endophyte transmission from plant to seed.

Design of Power Transmission System of a Water Bike (수상 자전거의 동력전달장치 설계)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.153-159
    • /
    • 2013
  • The power transmission system has always been considered critical for a human powered boat(or water bike) since it first showed up at Human Powered Vessel Festival. Mechanical problems, such as abrasions and other damages of the gear system for the power transmission, lead to poor durability and low efficiency of a boat. This paper described mechanical problems and a design process of power transmission system and then suggested the method to solve the problems. It is selected a module and a type of gears that are structurally stable thus can transmit the power durable. Especially the lower gear box is applied to CRP(contra rotating propeller) system for improving the structural stability and the propeller efficiency as well. As the results, the upper and lower gear box are designed and manufactured. And from the trial test, it is confirmed that the power transmission system is reliable.

A study on operation efficacy and security improvement through structural modification of CCTV network for bansong water purification plant (반송정수장 CCTV망의 구조개선을 통한 운영효율화 및 보안성 개선사례에 관한 연구)

  • Park, Yeunchul;Choi, Hyunju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • Owing to the development in information and communications technologies have improved the technology for high-speed transmission of massive data, which has changed closed-circuit television (CCTV) video transmission technology. In particular, digitization of the CCTV video format and streaming technology has made it possible to minimize transmission loss and integrate video transmission and camera control(pan/tilt). It has also become possible to provide additional services like remote emergency warning broadcasting with just Internet Protocol (IP). However, because of the structural problems of IP, these changes have also brought about the threat of hacking of CCTV monitoring systems. In this study, we propose a methode to optimize network management by examining cases of enhancement of operational efficiency and security by improving the structure of CCTV monitoring network.

Performance of a Plate-Type Enthalpy Exchanger Made of Papers Having Different Properties (종이 물성에 따른 판형 전열교환기의 성능)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.547-555
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Papers having different properties were made from the same pulp by calendering or refining. Enthalpy exchanger samples were made from the papers, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were obtained, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that effective efficiency of latent heat transfer was approximately the same independent of the samples, which suggests that papers made of the same pulp show similar water vapor transmission characteristics independent of the degree of calendering or refining. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

Effect of Paper Properties on the Performance of a Enthalpy Exchanger (종이 물성이 전열교환 엘리먼트 성능에 미치는 영향)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.414-418
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Three enthalpy exchanger samples having different properties were made, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were defined, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that water vapor transmission rate alone was not a proper indicator for the efficiency of latent heat transfer. Air permeability should also be considered for adequate evaluation of the latent heat transfer. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

  • PDF

A Study on the Design of water Hydraulic Systems Based on Characteristics of Tap-Water (수압 특성 연구를 기초로 한 수압시스템의 설계에 관한 연구)

  • Yun, Young-Won;Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1322-1331
    • /
    • 2004
  • This paper presents studies on the design of water hydraulic system and components to replace oil with tap-water as the pressure transmission medium in hydraulic systems. In order to improve the performance of water hydraulic system, the thermal and hydraulic properties of tap-water are first investigated. Based on these characteristics, the design parameters, such as the clearances of the moving parts, the cross-sectional area of pipes and relative roughness, are proposed so that the performance of water hydraulic system is the same as that of oil. In addition, the operating ranges, which show the possibility of using water hydraulic system, are examined.

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.