• Title/Summary/Keyword: water supply & sewage

Search Result 126, Processing Time 0.028 seconds

Water Quality Prediction and Forecast of Pollution Source in Milyanggang Mid-watershed each Reduction Scenario (밀양강 중권역 오염부하 전망 및 삭감 시나리오별 하류 수질예측)

  • Yu, Jae-Jeong;Yoon, Young-Sam;Shin, Suk-Ho;Kwon, Hun-Gak;Yoon, Jong-Su;Jeon, Young-In;Kang, Doo-Kee;Kal, Byung-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.589-598
    • /
    • 2011
  • Milyanggang mid-watershed is located in downstream of Nakdong river basin. The pollutants from that watershed have an direct effect on Nakdong river water quality and it's control is important to manage a water quality of Nakdong river. A target year of Milyanggang mid-watershed water environment management plan is 2013. To predict a water quality at downstream of Milyang river, we have investigated and forecasted the pollutant source and it's loading. There are some plan to construction the sewage treatment plants to improve the water quality of Milyang river. Those are considered on predicting water quality. As results, it is shown that the population of Milyanggang mid-watershed is 131,857 and sewerage supply rate is 62.2% and the livestock is 1,775.300 in 2006. It is estimated that the population is 123,921, the sewerage supply rate is 75.5% in 2013. The generated loading of BOD and TP is 40,735 kg/day and 2,872 kg/day in 2006 and discharged loading is 11,818 kg/day and 722 kg/day in 2006 respectively. Discharged loadings were forecasted upward 1.0% of BOD and downward 2.7% of TP by 2013. The results of water quality prediction of Milyanggang 3 site were 1.6 mg/L of BOD and 0.120 mg/L of TP in 2013. It is over the target water quality at that site in 2015 about 6.7% and 20.0% respectively. Consequently, there need another counterplan to reduce the pollutants in that mid-watershed by 2015.

A Survey of Cryptosporidium Oocysts in Water Supplies during a 10-Year Period (2000-2009) in Seoul

  • Lee, Mok-Young;Cho, Eun-Joo;Lee, Jin-Hyo;Han, Sun-Hee;Park, Yong-Sang
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.219-224
    • /
    • 2010
  • This study has been conducted to estimate the occurrence of Cryptosporidium oocysts in water supplies in the Metropolitan area of Seoul, South Korea, for 10 years from 2000 to 2009. Water samples were collected quarterly at 6 intakes in the Han River and its largest stream and 6 conventional Water Treatment Plants (WTPs) serving drinking water for 10 million people of Seoul. Cryptosporidium oocysts were found in 22.5% of intake water samples and arithmetic mean was 0.65 oocysts/10 L (range 0-22 oocysts/10 L). Although the annual mean of oocyst number was as low as 0.04-1.90 oocysts/10 L, 3 peaks in 2004 and 2007 were observed and the pollution level was a little higher in winter. The lowest density was observed at Paldang intake and the pollution level increased at Kuui and Jayang intakes. At the end of the largest stream, oocysts were found in 70% of collected samples (mean 5.71 oocysts/10 L) and it seemed that its joining the Han River resulted in the increase at Kuui intake and downstream. Oocyst removal by physical process exceeded 2.0-2.3 log and then all finished water samples collected at 6 WTPs were negative for Cryptosporidium in each 100 L sample for 10 years. These results suggested that domestic wastewater from the urban region could be a source of Cryptosporidium pollution and separating sewage systems adjacent to the intakes could be meaningful for some intakes having weakness related to parasitological water quality.

A Study on Clogging and Water Quality Improvement in Floodplain Filtration with Flood/rest Raw-water Supply (범람/휴지식 홍수터여과에서 폐색현상 및 수질개선도 연구)

  • Kim, Hoh-Seok;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • A pilot-scale experiment of floodplain filtration with a filtration depth of 3.6m was performed employing flood/rest type raw-water supply system in an effort to find ways to improve river water quality by additional treatments of discharged effluent from sewage treatment plant. Soil samples were taken from 3 sites including Gumi, Daegu and Gimhae along the Nakdong river. Reductions of infiltration rates following increases in operating time was investigated in each soil sample, along with the analysis of removal efficiencies of various pollutants according to different depths and infiltration rates. The results show incremental development of clogging on the soil surface with increases in operation time, and illustrate exponential decrease in the infiltration rate. The time required for the removal of the clog from the soil surface was longer than 2 weeks for all soil samples analyzed. The stable infiltration rates for soils were 5 m/day for Gumi and for Daegu and Gimhae was 1 m/day. In unsaturated soils dissolved oxygen levels increased following the increase of filtration depth, suggesting that alternating application of flood and rest for raw-water supply effectively keeps the soil environment aerobic. For all soils, the nature of pollutant removal depending on the depth of filtration remained the same regardless of the infiltration rate. Most of the BOD and turbidity were removed within 1.2 m, about 30% of COD was removed within 3.6m and was expected to be removed further with increases in filtration depth. Nitrification occurred near the surface of all soils; however there was no significant removal of nitrogen in the filtration depths tested in this study. Although removal rate of phosphorus was low for Gumi's soil, it was high enough for other soils, suggesting that the method developed in this study could significantly improve river water quality.

Evaluation of Ozone Resistance and Anti-Corrosion Performance of Water Treatment Concrete according to Types of Metal Spray Coating (수처리시설용 콘크리트의 금속용사 피막 종류에 따른 내오존성 및 전기화학적 방식 성능 평가)

  • Park, Jin-Ho;Choi, Hyun-Jun;Lee, Han-Seung;Kim, Sang-yeol;Jang, Hyun-O
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • As the pollution of water resources deteriorates due to industrialization and urbanization, it is difficult to supply clean water through a water treatment method using chlorine. Therefore, the introduction of advanced water treatment facilities using ozone is on the increase. However, epoxy which is used as waterproofing and anticorrosives and stainless steel used in conventional waterproofing and anti-corrosive methods have deteriorated because of the strong oxidizing power of ozone, causing problems such as leaking. Moreover, it even causes the durability degradation of a concrete. Therefore, in this study, metal spraying system was used as the means of constructing a metal panel with excellent ozone resistance and chemical resistance which is an easier method than an existing construction method. Ozone resistance was evaluated in accordance with the type of metal sprayed coatings to develop a finishing method which can prevent the concrete structure of water treatment facilities from deterioration. Furthermore, electrochemical stability in actual sewage treatment plant environment was evaluated. Experimental results showed that Ti has superior ozone resistance after spraying and the electrochemical stability in the sewage treatment plant environment showed that Ti has the highest polarization resistance of $403.83k{\cdot}{\Omega}{\cdot}cm^2$, which ensures high levels of durability.

A Waterborne Outbreak and Detection of Cryptosporidium Oocysts in Drinking Water of an Older High-Rise Apartment Complex in Seoul

  • Cho, Eun-Joo;Yang, Jin-Young;Lee, Eun-Sook;Kim, Se-Chul;Cha, So-Yang;Kim, Sung-Tek;Lee, Man-Ho;Han, Sun-Hee;Park, Young-Sang
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.461-466
    • /
    • 2013
  • From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing system of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable virus, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts.

Application of QUAL-2E Model for Water Quality Management in the Keum River -Waste loads Allocation Analysis by Considering Autochthonous BOD- (금강수계의 수질관리를 위한 QUAL-2E 모델의 적용(II) -자생BOD를 고려한 허용오염부하량 산정-)

  • 김종구;이지연
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • The Keum river has been utilized for drinking water supply of several city including Kunsan city and is deepening pollution state due to numerous municipal and industrial discharges. The concentration BOD in river is affected by the organic loading from a tributary and the algae biomass that largely happen to under eutrophication state. In the eutrophic water mass such as the Keum river, the autochthonous BOD was very important part for making a decision of water quality management, because it was accounted for majority of the total BOD. The predict of water quality has important meaning for management of water quality pollution of the Keum river. The purpose of this study will manage and predict water quality of the Keum river using QUAL-2E model considering the autochthonous BOD. The estimation of autochthonous BOD represented that the relationship between BOD and chlorophyll a. The regression equation was shown to be autochthonous BOD=$\beta$(sub)5$\times$chlorophyll a. The results of this study may be summarized as followed; The QUAL-2E model was calibrated with the data surveyed in the field of the study area in June, 1998. The calculated value by QUAL-2E model are in good agree to measured value within relative error of 7.80~20.33%. Especially, in the case of the considering autochthonous BOD, the calculated value of BOD were fairly good coincided with the observed values within relative error of 15%. But the case of not considering autochthonous BOD, relative error of BOD was shown to be 43.2%. In order to attain II grade of water quality standard in Puyo station which has a intake facility of water supply, we reduced to the pollutants loading of tributaries. In the case of removed 100% BOD of tributaries, the BOD of Puyo station was 4.07mg/$\ell$, belong to III grade of water quality standard. But in the case of removed 88% nutrient of tributaries, it was satisfied to II grade of water quality standard as below 3mg/$\ell$ of BOD. For estimation of autochthonous BOD in Keum river, we are performed simulating in accordance with reduction of nutrient load(50~100%) under conditions removal 90% organic load. Occupancy of autochthonous BOD according to nutrient loading reductions were varied from 25.97~79.51%. Occupancy of autochthonous BOD was shown to be a tendency to increasing in accordance with reduction of nutrient loading. Showing the above results, the nutrient that one of the growing factor of algae was important role in decision of BOD in the Keum river. For the water quality management of the Keum river, therefore, it is necessary to considering autochthonous BOD and to construction of advanced sewage treatment plant for nutrient removal.

  • PDF

Assessment of GHG Reduction Strategy - A Case of Environmental Facilities of Incheon City - (온실가스 감축 전략의 성과평가 - 지자체 환경기초시설 사례 -)

  • Jang, Jong-Ok;Lee, Sung Wook;Kim, Jong Dae
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.509-519
    • /
    • 2017
  • The study focuses on 32 environmental facilities in Incheon Metropolitan City, South Korea, categorizes them by sector: sewage treatment, wastewater treatment, incineration, landfill, water purification, and water supply. Their GHG reduction results are analyzed through quantitative and qualitative measures for 2012 to 2015. The study surveys and examines GHG reductions of the environmental facilities for two categories - facility operation and management. The findings are as follows: First, the GHG reduction rate, an emission-to-allocation ratio, from 2012 to 2015 is 89.67%. Second, GHG reductions coming from qualitative measures of facility management are even greater than those from quantitative measures of facility operation. Third, GHG reductions through facility operation are mostly attributable to overhauls, less use of facilities, resources recycling, process improvement rather than the betterment of fuels, facilities and energy efficiency. Fourth, higher reduction can be achieved by effective facility management, qualitative measures.

Indicators of Rural Regional Development Level by the City/County Type (농촌지역 발전수준 지표체계 설정과 시·군 유형별 비교)

  • Koo, Seung-Mo;Park, Yoon-Ho;Lee, Han-Sung;Choi, Se-Hyun
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.99-110
    • /
    • 2010
  • This paper builds a system of indicators representing rural regional development level. Indicators were classified into two groups, that is, living environment indicator group and regional vitality indicator group. Living environment indicator group consists of four indicators including housing, road, water supply, and sewage system, while regional vitality indicator group consists of five indicators including regional economy, public finance, and demography. Real data of the year 2002 and 2006 were used to do the basic statistical analysis and estimate the suitable statistical distributions for each indicator. Data were applied for the three city/county type, general city, urban-rural combined city, and county. General cities have the strongest urbanization tendency among the three types, while counties have the weakest tendency. General cities turned out to be superior in housing condition, road density, water supply system and sewage system. Indicators of employment and local finance showed the highest levels in counties. The results of this analysis are expected to provide local governments with the appropriate reference for their rural regional development policy.

Study on the Improvement of Water Regeneration Center by Using Non-water-soluble Sanitary Products: Focusing on the case of Seoul City (비수용성 위생용품 사용에 따른 물재생센터 개선방안: 서울시를 중심으로)

  • Choong-Gon Kim;Yoon-Hwan Bae;Hyun-Gon Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • This study was conducted to analyze problems related to non-water-soluble sanitary products during the treatment of water regeneration centers in E.T.F. and S.T.F. at a time when the demand and supply of non-water-soluble sanitary products are increasing. As a result, the improvement plan of the W.R.C. should focus on pretreatment facilities. When replacing facilities in the future, various dust removers suitable for the facility's reality will be installed in the pretreatment of S.T.F., and it is proposed to link a bar-racks screen with a comprehensive treatment device or install a comprehensive treatment device for impurities alone in the pretreatment of E.T.F.. In addition, a microscreen screen must be installed on the front end of the excretory treatment unit. to separate non-water-soluble materials, and it is necessary to secure a maintenance space for the excretory treatment unit.

The impact of anthropogenic factors on changes in discharge and quality of water in the Hadano basin, Japan (인위적인 요인이 하천의 유량과 수질변화에 미친 영향 - 일본 하다노 분지를 사례 로 -)

  • ;Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.242-254
    • /
    • 1995
  • The Hadano Basin is located at a distance of about 70kms and 60kms from Tokyo and Yokohama and lies in the south-west part of the Kanto region in Japan. The basin area, which correspoends to the catchment of the Kaname River, is about areal size of 60.7$\textrm{km}^2$ and extends about length of 8kms in E-W direction and about width of 5kms in N-S direction (Fig.1). The Hadano basin is filled with thick pile of the alluvum from deposits composed of volcanic materials, mostly came from the Hakone Volcano and overlain by Fuji Volcanic ashes. Fluvial deposits form the good aquifer, therefore water resources of Handano City has been largely depending upon the eroundwater. Urbanization and industrialization of the basin has been rapid in the last thirty years, after activation of "Factory Attraction Policy of Hadano City" in 1956. Growth in population and number of factory due to urbanization changed the land-use pattern of the basin rapidly and increased the water demands. Therefore, Hadano City exploited a new source of water supply, and have introduced the prefectureal waterworks since 1976. On the other hand, the rapid urbanization has brought about the pollution of streams in the basin by domestic sewage and industrial waste water. Diffusion rate of sewerage systems in Hadano City is 38% in 1993. In ordcr to examine the impact of anthropogenic factors on river environments, the author took up the change of land-use and diffusion area of sewerage as parameters, and performed field surveys on water discharge and quality. The survey has been made at upstream and downstream of the main stream regularly per month, to get informati ons about the variation of discharge and water quality aiong the stream and its diurnal fluctuation. Annual variation has been analyzed based the data from Hadano City Office. The results are summarized as follows. 1. Stream discharge has been increasing by urbanization (Fig.3). Water quality (C $l^{-10}$ , N $H^{+}$$_{ 4}$-N, BOD) has been improving gradually after the application of sewerage service, yet water pollution load at the lower station has increased than that at the upper one because of the larger anthropogenic discharge volumes (Fig.4). 2. Corrclation coefficient of discharges between upper and lower was 0.81-0.92. Pollutant loads of the R. Kamame after the confluence with R. Kuzuha grew up by 2.4-3.7 times as compared with its upper reaches, and it increased to 3.7-6.9 times after the confluence with the R. Muro (Fig.5). 3. The changes of water quality along the stream can be divided into two groups (Fig.6a). First: water quality of the R. Kaname and R. Shijuhachisse is becoming worse towards the lower reaches because the water from branches are polluted. Second: water quality are improved in the lower where spring and small branch streams supply clear water, for example R. Mizunashi, R. Muro and R. Kuzuha. 4. Measured discharge at the upper station in the R. Shijuhachisse is 0.153㎥/sec, and about 55% of this is recharged until it reaches to the lower point. The R. Mizunashi has a discharge of 1.155㎥/sec at the upper point, is recharged 0.24㎥/sec until the midstream and groundwater spring 0.2㎥/sec at the lower reaches. R. Kuzuha recharged all the mountain runoff (0.2㎥/sec) at the upper reaches. The R. Muro is supplied by many springs and the estimated discharge of spring was 0.47㎥/sec (Fig.6b). 5. Diurmal variations in discharge and water quality are influenced clearly by domestic and industrial waste waters (Fig.7, 8).ed clearly by domestic and industrial waste waters (Fig.7, 8).

  • PDF