• Title/Summary/Keyword: water spray system

Search Result 272, Processing Time 0.023 seconds

Low-Temperature Microencapsulation of Sesame Oil Using Fluidized Bed Granulation (Fluidized bed granulation을 이용한 참기름의 저온 미세캡슐화)

  • Jeong, Chan-Min;Lee, Min-Kyung;Lee, Hyun-Ah;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • Top spray-drying method is frequently utilized for flavor encapsulation, but the top spray-dried products frequently suffer from high losses of volatile flavor as the result of a high processing temperature (150-$300^{\circ}C$). In an effort to solve these problems, a low-temperature fluidized-bed granulating method was utilized to encapsulate the flavor. For the encapsulation of sesame oil, oil-in-water emulsions of sesame oil and a mixture of maltodextrin, modified starch, gum arabic, and gellan gum were bottom-sprayed at milder temperatures (70-$100^{\circ}C$) using a fluidized-bed granulator. Sesame oil extracts from microcapsules were obtained via a simultaneous distillation/extraction technique, and the retention of volatile flavor compounds was analyzed via a gas chromatography-mass spectrometry. The retention of volatile flavors of sesame oil per se, spray-dried and fluidized-bed granulated microcapsules after 3-day-storage at $37^{\circ}C$ were 0.8%, 37.2%, and 42.0%, respectively. In addition, the low-temperature fluidized-bed granulation showed higher encapsulation yield and sensory preferences for the application of commercial products (beef rice porridge), as compared to spray drying.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Patent Technologies for Reducing Micro-Dust (미세먼지 저감을 위한 특허기술들)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • Four developed patents have applied for a new type of Composite Cyclone Scrubber followed by the previous research (Cho and Kim, 2017), including dust reducing fan with filters. Regarding target installation and maintenance cost, 64% reduction for investment costs (6.2 billion won vs. 17 billion won) compared to existing road pollution reduction system, while social benefit costs increase by 43% compared to existing road pollution reduction measures (72.6 billion won vs. 50.8 billion won). The composition of the device is an air blower type spiral guide vane, and an injection pressure collecting dust efficiency. A nozzle varies Injection angle and contact range, spray liquid species (waterworks, salty water). The proposed patent tests are circulation water Time-by-Time Spray and collected 41.4% more increased micro dust since the sprayed water meets contaminated gas due to the 45° degree colliding, which is 141% increased conventional dust collector. (Ratio of collection over 85%). As regards the source of collection liquid, circulated rainwater and well water, we expect a huge amount of energy and economically saved eco-friendly system in our patent. Finally, the guided vane and metal filter reduced over 90% micro-dust, while sprayed water cleans the vane and filters, resultantly minimizing the maintenance budget. The preliminary evaluations of the developed design make it possible to reduce not only cheaper maintenance budget due to the characteristic water spraying but the cost of water comes from mainly rain and underground.

Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces (지하대공간 초동 화재진압에 적용가능한 자율형 소화체계의 폼 분사 해석 기법 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.503-516
    • /
    • 2021
  • Autonomous fire detection and suppression system requires advanced technology for complex detection technology and injection/control technology for accurate hitting by fire location. Also, foam spraying should be included to respond to oil fires. However, when a single spray monitor is used in common, water and foam spray properties appear different, so for accurate fire suppression, research on the spray trajectory and distance will be required. In this study, experimental studies and numerical analysis studies were combined to analyze the foam spray characteristics through the spray monitor developed for the establishment of an autonomous fire extinguishing system. For flow analysis of foam injection, modeling was performed using OpenFOAM analysis software, and the commonly used foaming agent (Aqueous Film-Forming Foam) was applied for foam properties. The injection distance analysis was performed according to the injection pressure and the injection angle according to the form of the foam, and at the same time, the results were verified and presented through the injection experiment.

Establishing the Models for Optimized Design of Water Injection in Boilers with Waste-heat-recovery System (가습연소 폐열회수 보일러의 물분사 설계모델 구축에 관한 연구)

  • Shin, Jaehun;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.96-103
    • /
    • 2021
  • In order to improve the overall efficiency and meet the emission regulations of boiler systems, the heat exchanging methods between inlet air and exhaust gas have been used in boiler systems, named as the waste-heat-recovery condensing boiler. Recently, to further improve the overall efficiency and to reduce the NOx emission simultaneously, the concept of the water injection into the inlet air is introduced. This study suggests the models for the optimized design parameters of water injection for waste-heat-recovery condensing boilers and performs the analysis regarding the water injection amount and droplet sizes for the optimized water injection. At first, the required amount of the water injection was estimated based on the 1st law of thermodynamics under the assumption of complete evaporation of the injected water. The result showed that the higher the inlet air and exhaust gas temperature into the heat exchanger, the larger the amount of injected water is needed. Then two droplet evaporation models were proposed to analyze the required droplet size of water injection for full evaporation of injected water: one is the evaporation model of droplet in the inlet air and the other is that on the wall of heat exchanger. Based on the results of two models, the maximum allowable droplet sizes of water injection were estimated in various boiler operating conditions with respect to the residence time of the inlet air in the heat exchanger.

Fabrication and Evaluation of Colloidal Silica Containing Powders for Solid Self-emulsifying Drug Delivery System of Poorly Water Soluble Rivaroxaban (난용성 리바록사반 약물의 자가 유화 시스템 분말 제조를 위한 콜로이드 실리카 함유 분말의 제조 및 평가)

  • Sung Giu Jin
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.305-309
    • /
    • 2023
  • This study aims to prepare a colloidal silica-containing powder to enhance the solubility and dissolution rate of rivaroxaban using a self-nanoemulsifying drug delivery system (SNEDDS). We investigate the impact of colloidal silica on a nanoemulsion system for preparing powdered SNEDDS. The liquid SNEDDS comprises 30/20/50 (w/w/w) Peceol/Cremophor RH40/Tween 80, which results in the formation of the smallest droplets. Three powdered SNEDDS formulations are prepared by suspending the liquid SNEDDS formulation using colloidal silica and spray drying. The powdered SNEDDS prepared with liquid SNEDDS and colloidal silica at a ratio of 1/0.5 (w/w) exhibits the highest water solubility (0.94 ± 0.62 vs. 26.70 ± 1.81 ㎍/mL) and dissolution rate (38.4 ± 3.6 vs. 85.5 ± 3.4%, 45 min) when compared to the drug alone. Morphologically, the liquid SNEDDS is adsorbed onto colloidal silica and forms smaller particles. In conclusion, an SNEDDS containing rivaroxaban, prepared using colloidal silica, facilitates the creation of a nanoemulsion and enhances the water solubility of rivaroxaban. Accordingly, this technology holds significant potential for commercialization.

Enhancement of HF Gas Removal Efficiency of a Scrubber in Semiconductor Manufacturing Process by using ANCOVA Technique (ANCOVA를 이용한 반도체공정 스크러버 HF 가스 제거 개선)

  • Kim, S.J.;Lee, M.;Xu, J.;Lim, S.;Lee, H.;Koo, J.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • To comply with the regulation of the reinforcing Clean Air Conservation Act, it is necessary for the semiconductor manufacturers to develop effective low-concentration acid gas abatement system to treat the flue gas. The low-concentration acid gas was found to be harder to deal with than the high-concentration one. In this study, the effect of various potential treatments such as air-assist nozzle spraying, magnetizing the scrubbing water, and adding surfactants to spraying and scrubbing water were investigate through the application of the statistical ANCOVA method, which was proved to be very useful tool when the inlet concentration of acid gas could not be controlled precisely and it affected the removal efficiency of the abatement system.

Effect of Additive of the Encapsulated Amounts and Solubility of Poorly Water-soluble Ibuprofen in Gelatin Microcapsules

  • Li, Dong Xun;Park, Jung-Gil;Han, Hong-Hee;Yang, Chan-Woo;Choi, Jun-Young;Oh, Dong-Hoon;Yong, Chul-Soon;Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.269-273
    • /
    • 2007
  • Poorly water-soluble ibuprofen and ethanol can be encapsulated in gelatin microcapsule by spray drying technique. To select an optimal formula of ibuprofen-loaded gelatin microcapsule which increased the ethanol content and ibuprofen solubility with the decreased amount of gelatin in the microcapsules, in this study, the effect of gelatin, ibuprofen and sodium lauryl sulfate on the ibuprofen solubility and the amount of ethanol and ibuprofen encapsulated in the gelatin microcapsule were investigated. Ibuprofen solubility and the amount of ethanol encapsulated increased as gelatin and sodium lauryl sulfate increased, reached maximum at 4% and 0.6%, respectively and then followed a rapid decrease. Furthermore, the ibuprofen solubility and the encapsulated ibuprofen content increased as the amount of ibuprofen increased, reaching maximum at 0.5% and beyond that, there was no change in the solubility and ibuprofen content. However, the encapsulated ethanol content remained same irrespective of the amount of ibuprofen. On the basis of increased ibuprofen solubility, our results showed that the formula of ibuprofen-loaded gelatin microcapsule at the ratio of gelatin/ibuprofen/sodium lauryl sulfate/water/ethanol of 4/0.5/0.6/30/70 with ibuprofen solubility of about $290\;{\mu}g/mL$ and ethanol content of about $160\;{\mu}g/mg$ could be a potential oral delivery system for poorly water-soluble ibuprofen.

Corrosion Resistance of Degraded STS310S and STS347H by Cr-free Modified Si Organic/Inorganic Hybrid Coating Solution (Cr-free Si 변성 유/무기하이브리드 코팅액에 의한 열화된 STS310S 및 STS347H의 내식성)

  • Lee, So-Young;Kim, Young-Soo;Jeong, Hee-Rok;Kim, Gui-Shik;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.12-18
    • /
    • 2015
  • Austenitic stainless steels generally experience the occurrence of chromium-depleted zones at the boundaries, known as sensitization, caused by the carbide precipitation that takes place due to a welding process or heat treatment. Normally, the depleted zones become the focus of the intense corrosion. In this study, the Cr-free organic/inorganic hybrid solution was developed, and the artificially degraded STS316S and STS347H with the solution-coating investigated the corrosion resistance by salt spray test. Both the OIBD-1 and OIBD-2 solutions improved the corrosion resistance of STS310S and STS347H. The corrosion resistance with the OIBD-1 solution was better than that of OIBD-2 solution. Additionally, Both solutions have been proven excellence in adhesion ability, boiling water resistance and flexibility. However, a problem of rubbing after the boiling was found out to be overcome.