• Title/Summary/Keyword: water source

Search Result 4,393, Processing Time 0.051 seconds

A Study for the Selection Method of Control Area of Nonpoint Pollution Source (비점오염원 관리지역의 선정 기법에 관한 연구)

  • Park, Sanghyun;Jeong, Woohyeok;Yi, Sangjin;Lim, Bongsu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.

A Study on the Pollution Sources of Simple water Supply Piped System using Statistical Analysis (통계적 분석을 이용한 간이급수시설의 오염원에 관한 연구)

  • 이홍근;김현용;백도현;김지영;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.56-67
    • /
    • 1999
  • This study was performed to suggest the basic data and plans for the establishment of safe water supply plans in simple water supply piped system in the rural areas. In 4 different places, 24 points of water sources 36 points of taps from water sources were sampled. Of the whole 60 points, 55 points were ground water and 5 points were surface water. 14 items were measured for the analysis of water quality on each samples. The measured items were analyzed again by statistical method ; cluster analysis and principle components analysis. The results of this study are as followed. 1) In water quality analysis on water sources, 4 items, bacteria, E.coli, NH3-N and Fe exceed the standard. Of 24 points, 20 points(83%) on bacteria, 1 point(4%) on NH3-N and Fe exceed the standard. 2) In water quality analysis on near and remote taps, 4 items, bacteria, E.coli, NH3-N and Fe , exceed the standard. Of 36 points, 20 points (81%) on bactria, 1 pint(3%) on NH3-N and Fe exceed the standard. 3)Cluster analysis on water quality shows the differences by the kinds of water sources, geographical characteristics and distance from water sources. 4) Principle components analysis on ground water shows that Factor 1 and Factor 3 are natural fluctuation by the content of soil. Also, Factor 2 and Factor 4 are penetration of pollutants to underground. Therefore, it is needed to take deeper ground water in order to prevent from pollution in the areas which have ground water as water source . 5) Principle components analysis on surface water shows that Factor 1 is penetration of vacteria from surface to water source when rainfalls. Also, Factor 2 is fluctuation of water quality by the geographical characteristics. Therefore, the counterplans against non-point pollution source must be taken. Filtration and disinfection facilities are needed in the areas which have surface water as water source.

  • PDF

Development of Heating Technology for Greenhouse by Use of Ground Filtration Water Source Heat Pump (여과수열원 히트펌프를 이용한 온실난방기술 개발)

  • Moon, J.P.;Lee, S.H.;Kang, Y.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.2-172.2
    • /
    • 2010
  • This study was carried out in order to reduce the installation expense of heating system for greenhouse comparing to geothermal heat pump and develope the coefficient of performance (COP) for a heat pump. For getting plenty of heat flux from geothermal energy. Surface water in river channel was used for getting a lots of geothermal heat by penetrating water through underground soil layer of the river bank that make heat transmission to passing water. The range of water temperature after the process of Ground filtration is 13~18 degrees celsius which is very similar to low heat source of geothermal heat pump system and the plenty amount of heat source from that make the number of geothermal heat exchanging hole and the expense for geothermal heat exchanger construction reduced. Drainage well is also used for returning filtration water to the aquifer that keep the water good recirculation from losing geothermal heat and water resource. For the COP improvement of Heat pump, thermal storage tank with separating insulation plate according to the temperature difference make the COP of Heat pump that is similar to thermal storage tank with diffuser. Developed thermal storage tank make construction expense cheaper than customarily used one's. and that sand filter and oxidation sand (FELOX) are going to be used for improving ground filtration water quality that make heat exchanger efficiency better. All above developed component skill are going to be set on the Ground filtration water source heat pump system and applied for medium, large scale for protected greenhouse in riverside area and on-site experiment is going to do for optimizing the heating system function and overcome the problem happening in the process of on-site application afterward.

  • PDF

A Study on the Introduction of RO Facility for Jeju Samyang Water Source (제주도 삼양 수원지 RO 시설 도입 연구)

  • Kim, Woochan;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.601-608
    • /
    • 2015
  • Pollutants removal efficiency in pretreatment(GAC filter, multi-media filter, disk filter) and RO facilities was investigated for the Jeju Samyang spring water source where raw water intake has been stopped due to sea water intrusion. In addition, preliminary feasibility analysis was conducted between RO and groundwater intake systems. Turbidity removal in 4 different pretreatment processes was less than 25% due to low concentration of turbidity(i.e., less than 0.21 NTU), while multi-media filter is recommended for the pretreatment facility based on the low organic content in raw water as well as cheaper operation and maintenance cost. The average concentration of $Cl^-$ in raw water was 691.4 mg/L, while that of RO permeate was 9.1 mg/L(i.e., removal efficiency was 98.4%). In addition, TDS removal efficiency was 98.1%, which was quite high. The production cost for RO system($Q=4,000m^3/d$) was $362.1won/m^3$ considering installation, operation and maintenance cost for 30 years. While that of groundwater was $262.6won/m^3$ which was low compared to the RO system. However, it is recommended to introduce RO system for Samyang water source rather than new groundwater development because Samyang water source has been discharged to the sea without any usage, while groundwater can be used for other purpose as a sustainable water source.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Influence of Refrigerant Charge Amount on the Performance of a Water-to-Water Type Ground Source Heat Pump with a Variation of Compressor Speed and Water Flow Rate (용량 가변 및 유량변화에 따른 지열원 물대물 열펌프 유닛의 충전량 변화에 따른 성능 특성)

  • Cho, Chan-Yong;Choi, Jong-Min
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.30-36
    • /
    • 2011
  • The objective of this study is to investigate the effects of the refrigerant charge amount on the performance of a water-to-water ground source heat pump with a variation of compressor speed and the secondary fluid flow rate. The water-to-water ground source heat pump was tested by varying refrigerant charge amount from -40% to 20% of full charge. Compressor speed was changed from 30 Hz to 75 Hz and the secondary fluid flow rate was adjusted from 6 LPM to 14 LPM. For all test conditions, EWTs of an indoor heat exchanger and an outdoor heat exchanger were maintained at standard conditions of ISO 13256-2. The slope of the COP with the variation of charge amount is much steeper at undercharged conditions than that at overcharged conditions. For all compressor speed, the variation of the system performance according to charge amounts showed the similar trends. However, the optimum charge amount of the system increased a little with an increment of compressor speed. When the secondary fluid flow rate decreased, the system was optimized at higher refrigerant charge amount conditions.

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

Feasibility study on district heating Magok area by sewage water heat source (마곡지구 하수열에너지이용 타당성 검토)

  • Lee, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.357-362
    • /
    • 2009
  • As a unutilized energy, treated sewage water locates widespread near urban areas. From the previous survey, the sewage water is reported to hold energy potential up to 36,000 Tcal/year, which was 2.1% of the total domestic energy consumption and 9.7% of the energy usage in the household and business sector in 2006. Temperature of the sewage water differs locally, but its range is observed in a range of $20{\sim}25^{\circ}C$ in summer and $8{\sim}13^{\circ}C$ in winter. Since the temperature range of the sewage water has a better seasonal distribution about $5{\sim}10^{\circ}C$ compared to ambient air, it is a promising heat sink for summer or heat source for winter. The sewage water is also a high quality heat source from its abundant quantity and uniform temperature. Considering the ambient temperature of Korea is very low in winter, a heat pump system using the sewage water can be an alternative to prevent problems of capacity deficiency and frost formation.

  • PDF