• 제목/요약/키워드: water source

검색결과 4,414건 처리시간 0.032초

국내 비점오염 현황 및 제어방안: 총설 (Assessment and its control of non-point source pollution in Korea: Review)

  • 강민우;이상수
    • 상하수도학회지
    • /
    • 제33권6호
    • /
    • pp.457-467
    • /
    • 2019
  • Because non-point source pollution is very closely related to hydrological characteristics, its importance is highly emphasized nowadays along with accelerating climate change. Especially for Korea, the non-point source pollution and its control are entirely depending on runoff, precipitation, drainage, land use or development, based on geographical and topographical reasons of Korea. Many studies reported the physical (e.g., apparatus- and natural-type facilities, etc.) and chemical methods (e.g., organic and inorganic coagulants, etc.) of controling non-point pollutant source pollution, however, those are needed to be reconsidered along with climate change causing the unexpected patterns and amounts of precipitation and strengthen complexity of social community. The objectives of this study are to assess recent situations of non-point source pollution in Korea and its control means and to introduce possible effective ways of non-point source pollution against climate change in near future.

비점오염원 관리지역(소양호) 목표수질 달성도 평가 (Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution)

  • 최재완;강민지;류지철;김동일;임경재;신동석
    • 한국환경과학회지
    • /
    • 제23권5호
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

저온열원 활용을 위한 암모니아-물 재생 랭킨사이클의 엑서지 해석 (Exergy Analysis of Regenerative Ammonia-Water Rankine Cycle for Use of Low-Temperature Heat Source)

  • 김경훈;고형종;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.65-72
    • /
    • 2012
  • Rankine cycle using ammonia-water mixture as a working fluid has attracted much attention, since it may be a very useful device to extract power from low-temperature heat source. In this work, the thermodynamic performance of regenerative ammonia-water Rankine cycle is thoroughly investigated based on the second law of thermodynamics and exergy analysis, when the energy source is low-temperature heat source in the form of sensible energy. In analyzing the power cycle, several key system parameters such as ammonia mass concentration in the mixture and turbine inlet pressure are studied to examine their effects on the system performance including exergy destructions or anergies of system components, efficiencies based on the first and second laws of thermodynamics. The results show that as the ammonia concentration increases, exergy exhaust increases but exergy destruction at the heat exchanger increases. The second-law efficiency has an optimum value with respect to the ammonia concentration.

음주(飮酒)가 십이원혈(十二原穴)의 체표전위에 미치는 영향 : 교차대조연구 (The Effect of Drinking Alcohol on Bio-electrical Potential at Twelve Source Points : A Cross-over Study)

  • 김정완;김재홍;임윤경
    • 대한한의학회지
    • /
    • 제39권1호
    • /
    • pp.44-54
    • /
    • 2018
  • Objectives: The objective of this study is to investigate the effects of drinking alcohol on bio-electrical potential at twelve source points. Methods: Twenty healthy adults were assigned to alcohol and water groups by a random cross-over design. Bio-electrical potential at twelve source points were measured before and after drinking alcohol or water and the change of bio-electrical potential was analyzed and compared between the alcohol and the water groups. Results: Bio-electrical potential at LI4, ST42, KI3, PC7, TE4, GB40, LR3 in the alcohol group was significantly increased compared to those in the water group. Conclusions: Drinking alcohol increased bio-electrical potential at source points of LI, ST, KI, PC, TE, GB and LR in healthy human subjects.

수열원 냉난방 동시형 히트펌프 시스템의 실외 열교환기 유량제어를 통한 성능개선에 관한 연구 (A Study on the Performance Improvement of a Simultaneous Heating and Cooling Water Source Heat Pump System by Controlling of the Refrigerant Flow Rate in an Outdoor Unit)

  • 배흥희;이동혁;이상헌;김병순;안영철
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.131-136
    • /
    • 2013
  • The present study has conducted cycle design and control technology of a water source VRF heat pump system. Previously, study of a simultaneous heating and cooling in an air source VRF heat pump system has been conducted. However, performance data and design methods for simultaneous heating and cooling in a water source VRF heat pump system are limited in the literature, due to various system parameters and operating conditions. In this study, the operating characteristics and performances of a simultaneous heating and cooling heat pump system are carried out, in simultaneous operation modes. Control logics of an EEV are developed for flow rate control to the outdoor unit, and are verified. When the control logics are applied, the simultaneous cooling and heating performances are sufficiently achieved, and system COPs are increased by up to 23.4%.

물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구 (Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System)

  • 홍부표;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

Water Treatment of High Turbid Source by Tubular Ceramic Microfiltration with Periodic Water-back-flushing System

  • Lee, Hyuk-Chan;Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.12-17
    • /
    • 2007
  • We performed periodic water-back-flushing using permeate water to minimize membrane fouling to enhance permeate flux in tubular ceramic microfiltration system for water treatment of high turbid source. The filtration time (FT) = 2 min with periodic 6 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume $(V_T)\;=\;6.805L$. Also in the result of BT effect at fixed FT = 10 min and BT (back-flushing time) = 20 sec showed the lowest value of $R_f$ and the highest value of $J/J_o$, and we could obtain the highest $V_T\;=\;6.660\;L$. Consequently, FT = 2 min and BT = 6 sec could be the optimal condition in water treatment of high turbid source above 10 NTU. However, FT = 10 min and BT = 20 sec was superior to reduce operating costs because of lower back-flushing frequency. Then the average quality of water treated by our tubular ceramic MF system was turbidity of 0.07 NTU, $COD_{Mn}$ of 1.86 mg/L and $NH_3-N$ of 0.007 mg/L.

경북지역 소규모수도시설 이용자의 수질.비용에 대한 인식 (Cognition on Quality and Cost of Small Drinking Water Plants in Gyungbuk Region)

  • 강미아;양명석
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.675-682
    • /
    • 2010
  • Groundwater is an essential drinking water source in Gyungbuk, South Korea. The primary source of nitrate in groundwater is from nitrogen fertilizers. Efficient management of a small drinking water plant requires a good understanding of its status such as the objective and the cognition of users. The objective of this study is to understand user situation and produce useful user-friendly policy based on user cognition. Most people who participated in this study, should take their groundwater from a good quality source. Even though they would like to have a good facility for getting safe water, they were reluctant to do it due to the cost used. It means that people who drink groundwater have no idea that health safety is affected by groundwater quality. The volume used depended upon personal activities such as agriculture and stockbreeding. We can easily find groundwater with nitrate that exceeds drinking water standards. Therefore, we have to carry out groundwater management with two categories ; 1) drinking water only and 2) others according to objectives in small drinking water systems.

낙동강 유역의 수질관리를 위한 유역모델링 적용 연구 (Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin)

  • 장재호;안종호
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF