• Title/Summary/Keyword: water soluble propolis

Search Result 5, Processing Time 0.02 seconds

Properties of Water-Soluble Propolis Made with Honey

  • Woo, Soon Ok;Han, Sangmi;Hong, Inpyo
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.391-394
    • /
    • 2017
  • Propolis is made by bees collecting protective material or essence of plants and mixing with saliva and enzymes produced by the salivary glands. It is used to repair the inside of the honeycomb, keep it sterile, and adjust the temperature and humidity. Propolis is a natural antibiotic substance that it is used to make a clean room by coating the cell before the queen bee lay eggs, and preventing the bacteria from invading by using with wax when sealing the nursery room. Propolis extract is a health functional food with antioxidant and oral antimicrobial effects. In order to use propolis in food, its active ingredients are extracted with ethanol. Water-soluble propolis was prepared by mixing and stirring honey and ethanol extracted propolis (EEP) solution. When 1kg of honey and 100ml of ethanol extracted propolis solution were mixed and stirred, the total flavonoid content of water-soluble propolis was $6.6{\pm}1.1mg/10g$, and the free radical scavenging effects of water-soluble propolis were 54 to 74%.

Damage of radioprotection and antitumor effects of water-soluble propolis

  • Terai, Kaoru;Ryu, Myung-Sun;Itokawa, Yuka;Maenaka, Toshihiro;Nakamura, Takashi;Hasegawa, Takeo;Choi, In-Suk;Ishida, Torao;Gu, Yeun-Hwa
    • Advances in Traditional Medicine
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2006
  • Some natural products are able to inhibit radiation effects and exert an antitumor effect with fewer adverse reactions; however, their antitumor effects are less than those of widely-used synthetic drugs. Propolis is a natural material that has been attracting attention, and we extracted this material with water and investigated the effect of continuous propolis administration on radioactivity-induced reduction of hemocytes, in addition to the antioxidant and antitumor effects of propolis. Following a 1-week adjustment period, water-soluble propolis was administered intraperitoneally to male ICR mice at a dose of 100 mg/kg every other day for 2 weeks. Following administration, 2 Gy whole-body irradiation was performed and the counts of leukocytes, lymphocytes, and granulocytes and monocytes in the peripheral blood were determined 1, 3, 7, 15 and 30 days after irradiation. These cells were considered since they are closely associated with immunity to radioactivity. In a second experiment, water-soluble propolis was similarly administered to the mice for 2 weeks after a 1-week adjustment period, and 2 Gy whole-body irradiation was performed. The antioxidant effects in hemocytes were then investigated using 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), a radical generator. In a third experiment, $1\;{\times}\;10^6$ Sarcoma-180 cells were inoculated into the right thigh of mice, which were divided into four groups: control, water-soluble propolis-treated, 6 Gy irradiated and water-soluble propolis-treated + 6 Gy irradiated groups, and changes in tumor size were measured for 20 days. Statistical analysis was conducted using ANOVA for multiple groups. In the three experiments, administration of water-soluble propolis inhibited the reduction of hemocytes caused by whole-body irradiation, showed antioxidant effects against radioactivity, and inhibited tumor growth, respectively. In conclusion, our data suggest that the antioxidant effect of watersoluble propolis inhibits hemocyte reduction caused by whole-body irradiation and enhances immunological inhibition of tumor growth.

Preparation of Water Soluble Powder of Propolis and the Quality Changes of its Bread during Storage (Propolis 수용성분말 제조 및 이를 첨가한 빵의 저장 중 품질변화)

  • Song, Hyo-Nam
    • Korean journal of food and cookery science
    • /
    • v.22 no.6 s.96
    • /
    • pp.905-913
    • /
    • 2006
  • The properties of water soluble powder of propolis(WSP), made with different levels(0, 20, 40, 60, 80%) of ethanol extract of propolis(EEP) and hydrocolloid were investigated, along with the quality changes of its bread after 7 days' of storage at $30^{\circ}C$ The yield of WSP containing 40% EEP treated at $160^{\circ}C$ was the highest at 59.3% and the brown color of all the powders tended to be darkened with increasing EEP content. The turbidity of WSP treated at higher temperature was decreased in its aqueous solution (10%, w/w), and this was considered to be due to the presence of minute nonsoluble particles. Antioxidative activities determined by DPPH(1,1-diphenyl-2-picrylhydrazyl) were the lowest in WSP treated at $140^{\circ}C$, while those of the WSP samples prepared at 160 and $180^{\circ}C$ were as high as that of WSP containing more than 40% EEP, regardless of EEP concentration. The propolis breads with added WSP made at $160^{\circ}C$ were selected as the most desirable powder for subsequent study. Bread with WSP40 was the heaviest while the volume loss of WSP80 was the greast after baking. The moisture contents of the propolis bread were drastically decreased until 3 days' of storage, but it was thought that WSP might be ineffective for the prevention of moisture loss. The pH of breads without EEP was decreased after 3 days' of storage, while that of the WSP breads remained almost unchanged until 5 days' of storage. Total bacterial counts also exhibited decay levels during the storage. In conclusion, water soluble powder of propolis is useful as a natural antioxidative and antibacterial material in various types of food.

Antimicrobial Activity of Water Soluble Propolis (수용성 프로폴리스의 항균성)

  • Park, Heon-Kuk;Kim, Sang-Bum;Shim, Chang-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • In this study, the minimum inhibition concentration(MIC), growth inhibition activity, and colony forming inhibitory activity of water soluble propolis against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae and Salmonella enteritidis were tested. The MICs of the water soluble propolis against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, and Salmonella enteritidis were 312.5 ppm, below 156.3 ppm, 625 ppm, 10,000 ppm, above 10,000 ppm, 10,000 ppm, above 10,000 ppm, above 10,000 ppm, 10,000 ppm, and above 10,000 ppm, respectively. The growth inhibition concentrations against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, and Klebsiella pneumoniae were 156.3 ppm, below 156.3 ppm, 625 ppm, 5,000 ppm, 10,000 ppm, 10,000 ppm, 10,000 ppm, 10,000 ppm, and 5,000 ppm, respectively. However, 10,000 ppm did not inhibit the growth of Salmonella enteritidis. Finally, the colony forming inhibitory activities against Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Streptococcus mutans, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, and Salmonella enteritidis were 98.0%, 99.8%, 69.8%, 98.1%, 62.0%, 63.1%, 79.5%, 61.9%, 79.6%, and 0.0%, respectively.

Antimicrobial, Anti-inflammatory, and Anti-oxidative Effects of Water- and Ethanol-extracted Brazilian Propolis

  • Kim, Kee-Tae;Yeo, Eun-Ju;Han, Ye-Sun;Nah, Seung-Yeol;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.474-478
    • /
    • 2005
  • Because it possesses anti-inflammatory, antifungal, antiviral, and tissue regenerative properties, propolis has been used for thousands of years in folk medicine for multiple purposes. Although the antimicrobial activity of propolis has already been demonstrated, very few studies have been conducted on bacteria of clinical relevance in dentistry. The aim of this study is to evaluate the antimicrobial, anti-inflammatory, and anti-oxidative activities of 0.1% and 1.0% propolis, both of water-extracted (proAQ) and ethanol-extracted (proAL) propolis, for industrial applications. In studies of antimicrobial activity, the growth of Staphylococcus aureus ATCC 35556, Salmonella enteritidis ATCC 12021, Escherichia coli O157:H7, and Candida parapsilosis KCCM 35428, all general food or clinical pathogens, were tested. The culture medium used was trypticase soy broth including 0.6% yeast extract; after 6 hr of incubation, the turbidities were measured at 620 nm with a spectrophotometer. The results indicate that the antimicrobial effects of both 1.0% proAQ and 1.0% proAL were greater against the growth of S. aureus ATCC 35556 and C. parapsilosis KCCM 35428 rather than those of S. enteritidis ATCC 12021 and E. coli O157:H7. Additionally, it appears that the anti-inflammatory effects of proAL are greater than those of proAQ. The anti-inflammatory effects were evaluated by measurement of the inhibition of hyaluronidase activity in vitro. At a 1% concentration, the anti-inflammatory effects of proAL were greater than those of proAQ. Finally, the anti-oxidative effects of 1% and 10% solutions of each extract sample were measured according to the TBA method at $40^{\circ}C$ for 1, 2, 3, and 5 days and were compared with 1.0% BHT. The results indicate that the anti-oxidative effects at 0.1% for both proAQ and proAL were not significantly different than the anti-oxidative effects at 1.0% BHT (p<0.05). Thus, it appeared that the alcohol-extracted propolis had greater antimicrobial, anti-inflammatory, and anti-oxidative effects than the water-extracted propolis. This is based on the presumption that major biofunctional components were fat-soluble, rather than water-soluble.