• Title/Summary/Keyword: water quality management

Search Result 2,271, Processing Time 0.031 seconds

A study on Investigation of Fecal Contamination Indicator Bacteria for Management of Source Water Quality (상수원 수질관리를 위한 분변오염 지표세균에 관한 연구)

  • 장현정;이용욱
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • Coliforms is currently being used as the standard of environmental water qualify to evaluate the level of source water quality especially condition of fecal contamination. However, not properly applied to water quality management. So in this study, in addition to Coliforms, fecal contamination indicator bacteria turk at Feral Coliforms(FC), E. coli, Fecal streptococci(FS), Clostridium and environmental parameters related with it's distribution were investigated on a monthly basis in 6 water intakes of Han River. The mean of BOD, DO, SS and pH, benchmarks of source water management were maintained the second grade of environmental water quality standard applied to Han River but Coliforms exceeded it. Distribution of Coliforms ranged from 1.0×10¹ to 2.7 10/sup 5/ CFU/ml, FC ranged from ND to 5.3×10¹ CFU/ml, E. coli ranged from ND to 9.2×10¹ CFU/ml, FS ranged from ND to 2.5×10¹CFU/ml, they were steepy rise on July and August in common when rainfalls was heavy and water temperature was high, but Clostridium perfringens ranged from 1.7×10¹to 1.7×10¹CFU/ml not fluctuate by month. Statistical analysis of sampling data showed that most significant correlations occurred among FC and Coliforms(r = 0.840), E. coli(r = 0.792), FS(r = 0.687) and environmental parameters(temperature, turbidity, SS, rotor were all r > 0.60) while no significant correlation was observed between ammonia generally recognized fecal contamination indicator and bacteria. Identification of the coliforms showed that Enterobacter, Klebsiella, Citrobacter were comprised of 32%, 24%, 16% respectively, and E. coli were 7% of it. while E. coli was made up 85.9% of FC. The mean value of FC/Coliforms ratio, 5.2(0.1-42) were higher in Amsa, Guui than Jayang. Fecal coliforms, as those are able to reflect more particularly the extent of the fecal contamination, were considered useful in deciding the level of water treatment while monitoring the fecal contamination from the source of water supply. Therefore, it is expected that the water quality is going to be managed more efficiently by using fecal coliforms supplementarily to total coliforms which are current standard item of water-quality environment.

Water Quality Management Planning for the Lake Sapgyo by Stream Grading Method (하천등급화 모델을 이용한 삽교호 수질관리 방안에 관한 연구)

  • Choi, Jeongho;Kim, Hongsu;Cho, Byunguk;Park, Sanghyun;Lee, Mukyu
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • Water quality improvement projects are being implemented without predicting the effect of water quality improvement on Lake Sapgyo. As the method of selecting the target stream for the effective conduct of water quality improvement projects the method of rating the streams were studied. To build a stream grading method, 60 major streams in the Lake Sapgyo system were monitored. The selection method of rivers subject to priority management for water quality improvement was applied to the stream grading method using the Analytic Hierarchy Process (AHP). The analysis of importance by site by stream grading method revealed the following: water quality (36.0%), flow (26.1%), travel load (13.4%), TMDL density (12.0%), TMDL (8.9%), and area (3.7%). The pollution level of the river was scored by using the stream grading method, and the ranking of 51 streams was calculated. Based on this, the group was classified into six grades (A-F). Among the groups, the F and E groups were selected as the priority management streams. Cheonan-Cheon (Cheonan City) was selected as the first stream to establish water quality improvement measures in the Lake Sapgyo system, and Seowoo-Cheon (Dangjin City) was selected as the second site, and Oncheon-Cheon (Asan City) was selected as the third site. Each local government is expected to improve the water quality improvement effect with limited resources when establishing and implementing water quality improvement measures for the streams (F group, E group) to be managed in this study.

A Study on the Designation of Nonpoint Pollution Management Region (비점오염원 관리지역 도출에 관한 연구)

  • Choi, Ji Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.434-439
    • /
    • 2007
  • Amended Water Quality Environment Preservation Law enacted that the areas where nonpoint pollution is serious can be designated as Nonpoint Source Management Region. According to Section 54 of Water Quality Environment Preservation Law, corresponding watersheds are areas where runoff from nonpoint pollution source may deteriorate river and lake water quality, residents' health and property, and ecosystem. The criteria are as followings; i) where nonpoint source contribution result in or will result in significant ecological destruction, iii) national or local industrial complexes and cities having population greater than one million where nonpoint source managements are necessary, iv) where specific measurement is necessary because of its geological and stratigraphic characteristics. In this research, detailed designation criteria was developed reflecting current nonpoint source management situation and its discharge characteristics. Depending on the result, target regions were also suggested. In additions, it will be desirable that the target regions are prioritized considering institutional execution availability, stakeholder's agreement, and connection with existing nonpoint source pollution management measures.

Analysis of Water Quality caused by Improvement of Sewage Treatment Plant in Masan Bay (하수처리장 개선이 마산만 수질에 미치는 영향분석)

  • Oh Hyun-Taik;Goo Jun-Ho;Park Sung-Eun;Choi Yun-Sun;Jung Rae-Hong;Choi Woo-Jeung;Lee Won-Chan;Park Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.777-783
    • /
    • 2005
  • For the sustainable management of marine ecosystem in Masan Bay, we have to assess the carrying capacity and standard of target water quality. In this research, we assume that all pollutants loads are treated in Dukdong sewage treatment plant, then we simulate the physical-biological model for prediction water quality for the achievement of standard water quality. In 2001 year, for the achievement of COD 2.5 mg/L, we need to reduce COD $90\%$, nitrogen $30\%$, phosphate $90\%$ than that of the present value, According to these results, the water quality of sewage treatment plant is required to treat COD 13.5 mg/L, nitrogen 33.3 mg/L, phosphate 6,0 mg/L. If the sewage treatment plant will be expanded much larger in 2011, it will need to be treated in COD 6.6 mg/L, nitrogen 2.5 mg/L, phosphate 5 mg/L for the achievement of water quality standard in COD 2.5 mg/L.

Prediction of Water Quality of Youngwol Multipurpose Dam Using FEMWASP (FEMWASP 모형을 이용한 영월 다목적댐의 장래 수질 예측)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.443-452
    • /
    • 1998
  • The future water quality of Youngwol Dam was predicted using FEMWASP. In the this study, point and non-point source in the basin was investigated in detail, and future pollutant loading was computed by various prediction technique. The water quality of 29 sites was analyzed over four seasons. FEMWASP was used to predict future water quality of Youngwol lake and downstream of proposed dam. Future water quality of Youngwol lake was predicted to configure eutrophication status, management criteria was suggested to minimize the pollution problems coming from future eutrophication. Discharge rate of dam was decided as 30CMS to conserve the water quality, and overall design of dam was changed.

  • PDF

Behavior of Water Quality in Freshwater Lake of Tide Reclaimed Area Using SWMM and WASP5 Models (SWMM과 WASP5모형을 이용한 간척지 담수호의 수질거동 특성 조사)

  • 김선주;김성준;이석호;이준우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2002
  • Lake water quality assessment information is useful to anyone involved in lake management, from lakeshore owners to lake associations. 11 provides lake water quality, which can improve how to manage lake resources and how to measure current conditions. It also provides a knowledge base that can be used to protect and restore lakes. SWMM was applied to simulate the discharge and pollutant loads from Boryeong watershed, and WASP5 was applied to analyze the changes of water quality in Boryeong freshwater lake. In each model, the most suitable parameters were calculated through sensitive analysis and some parameters used default data. Simulated in SWMM and measured discharge showed the accuracy of 88.6%. T-N and T-P exceeds the criteria in the simulation of water quality in Boryeong freshwater lake, and control of pollutant loads in the main stream showed the most effective way. Integrated water quality management system was developed to give convenience in the operation of SWMM and WASP5 and data acquisition.

Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model (베이지안 네트워크 모형을 이용한 낙동강 유역의 가뭄과 수질관리의 인과관계에 대한 확률론적 평가)

  • Yoo, Jiyoung;Ryu, Jae-Hee;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.769-777
    • /
    • 2021
  • This study investigated the change of the achievement rate of the target water quality conditioned on the occurrence of severe drought, to assess the effects of meteorological drought on the water quality management in the Nakdong River basin. Using three drought indices with difference time scales such as 30-, 60-, 90-day, i.e., SPI30, SPI60, SPI90, and three water quality indicators such as biochemical oxygen demand (BOD), total organic carbon (TOC), and total phosphorus (T-P), we first analyzed the relationship between severe drought occurrence water quality change in mid-sized watersheds, and identified the watersheds in which water quality was highly affected by severe drought. The Bayesian network models were constructed for the watersheds to probabilistically assess the relationship between severe drought and water quality management. Among 22 mid-sized watersheds in the Nakdong River basin, four watersheds, such as #2005, #2018, #2021, and #2022, had high environmental vulnerability to severe drought. In addition, severe drought affected spring and fall water quality in the watershed #2021, summer water quality in the #2005, and winter water quality in the #2022. The causal relationship between drought and water quality management is usufaul in proactive drought management.

Tracing Water Pollution Source using FDC and Exceedance Rate in Cheongmicheon Watershed (FDC 및 초과율을 이용한 청미천 유역에서의 오염원 추적)

  • Kim, Yeon-Su;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.136-144
    • /
    • 2018
  • The Ministry of the Environment conducts a water environment management plan and TMDL(Total Maximum Daily Load) for integrated watershed management, and determines whether the target water quality is achieved using water quality monitoring data. The concentration of monitoring points located in the downstream of the watershed is the outcome of complicated mechanisms such as influx of pollutants from the tributaries of the watershed and self-purification of river water. The purpose of this study is to analyze the effect of main stream and tributary water quality on the target water quality point using the water pollution source tracking and exceedance rate of watershed. In this study, FDC and exceedance rate analysis were performed on six water quality items including BOD and T-P, which are the targets of TMDL. Water quality items and points affecting the target water quality point were derived from flow rate. In this study, the pollution source tracking through FDC analysis and exceedance rate analysis will be able to establish more efficiently the water quality management strategy for each branch to achieve the target water quality.

The Water Quality of the Pasig River in the City of Manila, Philippines: Current Status, Management and Future Recovery

  • Gorme, Joan B.;Maniquiz, Marla C.;Song, Pum;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.173-179
    • /
    • 2010
  • Pasig River is an important river in the Metro Manila, Philippines, since it provides food, livelihood and transport to its residents, and connects two major water bodies; Laguna de Bay and Manila Bay. However, it is now considered to be the toilet bowl of Metro Manila due to the large amount of wastes dumped into the river. Even with the efforts of the government to revive the quality of the Pasig River and its tributaries, it continues to deteriorate over time. This paper provides an overview of the current condition of the Pasig River. The existing water management policies were reviewed, and the issues and challenges hindering the improvement of its water quality identified. Moreover, the water qualities of the rivers in Metro Manila were compared to those of the major rivers in South Korea. The current watershed management system practiced by South Korea has been discussed to serve as a guideline for future recovery of the water quality of the rivers in the Philippines.